Skip to content

Full Models

CompNeuroPy.full_models.BGM #

Bases: CompNeuroModel

The basal ganglia model based on the model from Goenner et al. (2021).

Attributes:

Name Type Description
name str

name of the model

description str

description of the model

model_creation_function function

function which creates the model

compile_folder_name str

name of the folder in which the model is compiled

model_kwargs dict

keyword arguments for model_creation_function

populations list

list of names of all populations of the model

projections list

list of names of all projections of the model

created bool

True if the model is created

compiled bool

True if the model is compiled

attribute_df pandas dataframe

dataframe containing all attributes of the model compartments

params dict

dictionary containing all parameters of the model

name_appendix str

string which is appended to all model compartments and parameters

Source code in CompNeuroPy/full_models/bgm_22/bgm.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
class BGM(CompNeuroModel):
    """
    The basal ganglia model based on the model from [Goenner et al. (2021)](https://doi.org/10.1111/ejn.15082).

    Attributes:
        name (str):
            name of the model
        description (str):
            description of the model
        model_creation_function (function):
            function which creates the model
        compile_folder_name (str):
            name of the folder in which the model is compiled
        model_kwargs (dict):
            keyword arguments for model_creation_function
        populations (list):
            list of names of all populations of the model
        projections (list):
            list of names of all projections of the model
        created (bool):
            True if the model is created
        compiled (bool):
            True if the model is compiled
        attribute_df (pandas dataframe):
            dataframe containing all attributes of the model compartments
        params (dict):
            dictionary containing all parameters of the model
        name_appendix (str):
            string which is appended to all model compartments and parameters
    """

    @check_types()
    def __init__(
        self,
        name: str = "BGM_v01_p01",
        do_create: bool = True,
        do_compile: bool = True,
        compile_folder_name: str | None = None,
        seed: int | None = None,
        name_appendix: str = "",
    ):
        """
        Args:
            name (str, optional):
                name of the model, syntax: "BGM_v*model_version*_p*parameters_version*"
                replace *model_version* and *parameters_version* with the versions you
                want to use, see CompNeuroPy.full_models.BGM_22.parameters for available
                versions. Default: "BGM_v01_p01"
            do_create (bool, optional):
                if True, the model is created after initialization. Default: True
            do_compile (bool, optional):
                if True, the model is compiled after creation. Default: True
            compile_folder_name (str, optional):
                name of the folder in which the compiled model is saved. Default: None,
                i.e. "annarchy_BGM_v*model_version*" is used
            seed (int, optional):
                the seed for the random number generator used during model creation.
                Default: None, i.e. random seed is used
            name_appendix (str, optional):
                string which is appended to all model compartments and parameters.
                Allows to create multiple models with the same name and keep names of
                compartments and parameters unique. Default: ""
        """
        ### check if name is correct, otherwise raise ValueError
        if not (
            len(name.split("_")) == 3
            and name.split("_")[0] == "BGM"
            and name.split("_")[1][0] == "v"
            and name.split("_")[2][0] == "p"
        ):
            raise ValueError(
                "name has to be of the form 'BGM_v*model_version*_p*parameters_version*'"
            )

        ### set attributes (except the ones which are set in the super().__init__())
        self.name_appendix = name_appendix
        self.seed = seed
        if len(self.name_appendix) > 0:
            self._name_appendix_to_add = ":" + name_appendix
        else:
            self._name_appendix_to_add = ""

        ### set model_version_name
        self._model_version_name = "_".join(name.split("_")[:2])

        ### update name with name_appendix
        name = name + self._name_appendix_to_add

        ### init default compile_folder_name
        if compile_folder_name == None:
            compile_folder_name = "annarchy_" + self._model_version_name

        ### set description
        description = (
            "The basal ganglia model based on the model from Goenner et al. (2021)"
        )

        ### init random number generator
        self._rng = np.random.default_rng(seed)

        ### get model parameters before init, ignore name_appendix
        self.params = self._get_params(name.split(":")[0])

        ### init
        super().__init__(
            model_creation_function=self._model_creation_function,
            name=name,
            description=description,
            do_create=do_create,
            do_compile=do_compile,
            compile_folder_name=compile_folder_name,
        )

    def _add_name_appendix(self):
        """
        Rename all model compartments, keys (except general) in params dict and
        names in attribute_df by appending the name_appendix to the original name.
        """

        ### update the attribute_df of the model object (it still contains the original
        ### names of the model creation)
        self.attribute_df["compartment_name"] = (
            self.attribute_df["compartment_name"] + self._name_appendix_to_add
        )
        ### rename populations and projections
        populations_new = []
        for pop_name in self.populations:
            populations_new.append(pop_name + self._name_appendix_to_add)
            ann.get_population(pop_name).name = pop_name + self._name_appendix_to_add
        self.populations = populations_new
        projections_new = []
        for proj_name in self.projections:
            projections_new.append(proj_name + self._name_appendix_to_add)
            ann.get_projection(proj_name).name = proj_name + self._name_appendix_to_add
        self.projections = projections_new
        ### rename parameter keys except general
        params_new = {}
        for key, param_val in self.params.items():
            param_object = key.split(".")[0]
            param_name = key.split(".")[1]

            if param_object == "general":
                params_new[key] = param_val
                continue

            param_object = param_object + self._name_appendix_to_add
            key_new = param_object + "." + param_name
            params_new[key_new] = param_val
        self.params = params_new

    def _model_creation_function(self):
        """
        Creates the model using the model_creation_function from the
        model_creation_functions.py file. The function is defined by the
        model_version_name.
        """
        model_creation_function = eval(
            "importlib.import_module('CompNeuroPy.full_models.bgm_22.model_creation_functions')."
            + self._model_version_name
        )
        model_creation_function(self)

    def create(self, do_compile=True, compile_folder_name=None):
        """
        Creates the model and optionally compiles it directly.

        Args:
            do_compile (bool, optional):
                If True the model is compiled directly. Default: True.
            compile_folder_name (str, optional):
                Name of the folder in which the model is compiled. Default: value from
                initialization.
        """
        ### create the model, but do not compile to set parameters before compilation
        super().create(do_compile=False, compile_folder_name=compile_folder_name)

        ### update names of compartments and parameters
        self._add_name_appendix()

        ### set parameters and connectivity of projections
        ### for each projection the connectivity has to be defined in the params
        self._set_params()
        self._set_noise_values()
        self._set_connections()

        ### compile the model, after setting all parameters (included in compile state)
        if do_compile:
            self.compile(compile_folder_name)

    def _set_params(self):
        """
        sets params of all populations
        """

        ### loop over all params
        for key, param_val in self.params.items():
            ### split key in param object and param name
            param_object = key.split(".")[0]
            param_name = key.split(".")[1]

            ### if param is a noise param --> skip (separate function)
            if param_name.split("_")[-1] == "noise":
                continue

            ### if param name ends with init --> actual param_name (in pop) is without init
            if param_name.split("_")[-1] == "init":
                param_name = "_".join(param_name.split("_")[:-1])

            ### if param_object is a pop in network
            if param_object in self.populations:
                ### and the param_name is an attribute of the pop --> set param of pop
                if param_name in vars(ann.get_population(param_object))["attributes"]:
                    ### if parameter values are given as distribution --> get numpy array
                    if isinstance(param_val, str):
                        if (
                            "Uniform" in param_val
                            or "DiscreteUniform" in param_val
                            or "Normal" in param_val
                            or "LogNormal" in param_val
                            or "Exponential" in param_val
                            or "Gamma" in param_val
                        ):
                            param_val_tmp = param_val
                            for distribution in [
                                "Uniform",
                                "DiscreteUniform",
                                "Normal",
                                "LogNormal",
                                "Exponential",
                                "Gamma",
                            ]:
                                param_val_tmp = param_val_tmp.replace(
                                    distribution, "ann_Random." + distribution
                                )
                            distribution = eval(param_val_tmp)
                            param_val = distribution.get_values(
                                shape=ann.get_population(param_object).geometry
                            )
                    self.set_param(
                        compartment=param_object,
                        parameter_name=param_name,
                        parameter_value=param_val,
                    )
                    ### if parameter base_mean --> also set I_base
                    if param_name == "base_mean":
                        self.set_param(
                            compartment=param_object,
                            parameter_name="I_base",
                            parameter_value=param_val,
                        )

    def _set_noise_values(self):
        """
        sets noise params of all populations
        """

        ### loop over all params
        for key, param_val in self.params.items():
            ### split key in param object and param name
            param_object = key.split(".")[0]
            param_name = key.split(".")[1]

            ### if param_object is a pop in network and param_name ends with noise --> set noise param of pop
            if (
                param_object in self.populations
                and param_name.split("_")[-1] == "noise"
            ):
                if param_name == "mean_rate_noise":
                    ### for mean and sd the actual parameter of the pop has to be calculated
                    mean = param_val
                    try:
                        ### noise values defined by mean and sd
                        sd = self.params[param_object + ".rate_sd_noise"]
                    except:
                        ### if only mean is available, only set mean
                        sd = 0
                    if sd != 0:
                        self.set_param(
                            compartment=param_object,
                            parameter_name="rates_noise",
                            parameter_value=self._rng.normal(
                                mean, sd, ann.get_population(param_object).size
                            ),
                        )
                    else:
                        self.set_param(
                            compartment=param_object,
                            parameter_name="rates_noise",
                            parameter_value=mean,
                        )
                elif param_name in vars(ann.get_population(param_object))["attributes"]:
                    ### noise parameters which are actual attributes of the pop are simply set
                    self.set_param(
                        compartment=param_object,
                        parameter_name=param_name,
                        parameter_value=param_val,
                    )
                else:
                    continue

    def _set_connections(self):
        """
        sets the connectivity and parameters of all projections
        """

        ### dict for each projection, which params were already set during connectivity definition
        already_set_params = {}

        ### set connectivity
        ### loop over all projections
        set_con_failed = False
        error_message_list = []
        for proj_name in self.projections:
            ### get the type of connectivity for projection
            try:
                connectivity = self.params[proj_name + ".connectivity"]
            except:
                print(
                    "\nERROR: missing connectivity parameter for",
                    proj_name,
                    "\n",
                    proj_name + ".connectivity",
                    "needed!\n",
                    "parameters id:",
                    self.params["general.id"],
                    "\n",
                )
                quit()

            possible_con_list = [
                "connect_fixed_number_pre",
                "connect_all_to_all",
                "connect_one_to_one",
                "connect_fixed_probability",
            ]
            if connectivity in possible_con_list:
                try:
                    # get all possible parameters of the connectivity function
                    con_func = eval(f"get_projection(proj_name).{connectivity}")
                    possible_con_params_list = list(
                        inspect.signature(con_func).parameters.keys()
                    )
                    # check if paramters are given in the params dict and create the kwargs for the connectivity function
                    con_kwargs = {}
                    for con_param_key in possible_con_params_list:
                        if proj_name + "." + con_param_key in self.params:
                            con_kwargs[con_param_key] = eval(
                                str(self.params[proj_name + "." + con_param_key])
                            )
                    # call the connectivity function with the obtained kwargs
                    con_func(**con_kwargs)
                    # store which parameters have been set
                    already_set_params[proj_name] = list(con_kwargs.keys())
                except:
                    exc_type, exc_value, exc_traceback = sys.exc_info()
                    error_message = traceback.format_exception_only(exc_type, exc_value)
                    error_message_list.append([f"ERROR: {proj_name}"] + error_message)
                    set_con_failed = True
            else:
                print(
                    "\nERROR: wrong connectivity parameter for",
                    proj_name + ".connectivity!\n",
                    "parameters id:",
                    self.params["general.id"],
                    "possible:",
                    possible_con_list,
                    "\n",
                )
                quit()
        if set_con_failed:
            print("\n")
            for error_message in error_message_list:
                print(" ".join(error_message))
            raise TypeError("Setting connectivities failed")

        ### set parameters
        ### loop over all params
        for key, param_val in self.params.items():
            ### split key in param object and param name
            param_object = key.split(".")[0]
            param_name = key.split(".")[1]

            if param_object == "general":
                continue

            ### if param_object is proj in network and param not already used and param is an attribute of proj --> set param of proj
            if (
                param_object in self.projections
                and not (param_name in already_set_params[param_object])
                and param_name in vars(ann.get_projection(param_object))["attributes"]
            ):
                self.set_param(
                    compartment=param_object,
                    parameter_name=param_name,
                    parameter_value=param_val,
                )

    def _get_params(self, name):
        """
        read all parameters for specified model name

        Args:
            name (str):
                name of the model, specifies which column in the csv file is used
        """

        csvPath = os.path.dirname(os.path.realpath(__file__)) + "/parameters.csv"
        csvfile = open(csvPath, newline="")

        params = {}
        reader = csv.reader(csvfile, delimiter=",")
        fileRows = []
        idx = -1
        ### check if name is in the .csv file
        for row in reader:
            if row[0] == "":
                continue
            fileRows.append(row)
            if "general.id" == row[0] and True in [
                name == row[i] for i in range(1, len(row))
            ]:
                idx = [name == row[i] for i in range(1, len(row))].index(True) + 1
            elif "general.id" == row[0]:
                print(
                    "No Parameters available for given model name "
                    + name
                    + "! (file "
                    + csvPath
                    + ")"
                )
                quit()
        if idx == -1:
            print("No general.id in parameter csv file!")
            quit()
        ### read the column corresponding to name
        for row in fileRows:
            if "###" in row[0]:
                continue
            if row[idx] == "":
                continue

            value = row[idx]
            try:
                ### if float(value) works value is a number --> check if it is int
                if float(value) - int(float(value)) == 0:
                    params[row[0]] = int(float(value))
                else:
                    params[row[0]] = float(value)
            except:
                ### value is a string
                if value[0] == "$" and value[-1] == "$":
                    ### value is a formula
                    params[row[0]] = float(eval(value[1:-1]))
                else:
                    ### value is some other string
                    params[row[0]] = value
        csvfile.close()

        return params

    def _needed_imports(self):
        for import_val in [
            ann_Random.Uniform,
            ann_Random.DiscreteUniform,
            ann_Random.Normal,
            ann_Random.LogNormal,
            ann_Random.Exponential,
            ann_Random.Gamma,
            importlib,
        ]:
            print(import_val)

__init__(name='BGM_v01_p01', do_create=True, do_compile=True, compile_folder_name=None, seed=None, name_appendix='') #

Parameters:

Name Type Description Default
name str

name of the model, syntax: "BGM_vmodel_version_pparameters_version" replace model_version and parameters_version with the versions you want to use, see CompNeuroPy.full_models.BGM_22.parameters for available versions. Default: "BGM_v01_p01"

'BGM_v01_p01'
do_create bool

if True, the model is created after initialization. Default: True

True
do_compile bool

if True, the model is compiled after creation. Default: True

True
compile_folder_name str

name of the folder in which the compiled model is saved. Default: None, i.e. "annarchy_BGM_vmodel_version" is used

None
seed int

the seed for the random number generator used during model creation. Default: None, i.e. random seed is used

None
name_appendix str

string which is appended to all model compartments and parameters. Allows to create multiple models with the same name and keep names of compartments and parameters unique. Default: ""

''
Source code in CompNeuroPy/full_models/bgm_22/bgm.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
@check_types()
def __init__(
    self,
    name: str = "BGM_v01_p01",
    do_create: bool = True,
    do_compile: bool = True,
    compile_folder_name: str | None = None,
    seed: int | None = None,
    name_appendix: str = "",
):
    """
    Args:
        name (str, optional):
            name of the model, syntax: "BGM_v*model_version*_p*parameters_version*"
            replace *model_version* and *parameters_version* with the versions you
            want to use, see CompNeuroPy.full_models.BGM_22.parameters for available
            versions. Default: "BGM_v01_p01"
        do_create (bool, optional):
            if True, the model is created after initialization. Default: True
        do_compile (bool, optional):
            if True, the model is compiled after creation. Default: True
        compile_folder_name (str, optional):
            name of the folder in which the compiled model is saved. Default: None,
            i.e. "annarchy_BGM_v*model_version*" is used
        seed (int, optional):
            the seed for the random number generator used during model creation.
            Default: None, i.e. random seed is used
        name_appendix (str, optional):
            string which is appended to all model compartments and parameters.
            Allows to create multiple models with the same name and keep names of
            compartments and parameters unique. Default: ""
    """
    ### check if name is correct, otherwise raise ValueError
    if not (
        len(name.split("_")) == 3
        and name.split("_")[0] == "BGM"
        and name.split("_")[1][0] == "v"
        and name.split("_")[2][0] == "p"
    ):
        raise ValueError(
            "name has to be of the form 'BGM_v*model_version*_p*parameters_version*'"
        )

    ### set attributes (except the ones which are set in the super().__init__())
    self.name_appendix = name_appendix
    self.seed = seed
    if len(self.name_appendix) > 0:
        self._name_appendix_to_add = ":" + name_appendix
    else:
        self._name_appendix_to_add = ""

    ### set model_version_name
    self._model_version_name = "_".join(name.split("_")[:2])

    ### update name with name_appendix
    name = name + self._name_appendix_to_add

    ### init default compile_folder_name
    if compile_folder_name == None:
        compile_folder_name = "annarchy_" + self._model_version_name

    ### set description
    description = (
        "The basal ganglia model based on the model from Goenner et al. (2021)"
    )

    ### init random number generator
    self._rng = np.random.default_rng(seed)

    ### get model parameters before init, ignore name_appendix
    self.params = self._get_params(name.split(":")[0])

    ### init
    super().__init__(
        model_creation_function=self._model_creation_function,
        name=name,
        description=description,
        do_create=do_create,
        do_compile=do_compile,
        compile_folder_name=compile_folder_name,
    )

create(do_compile=True, compile_folder_name=None) #

Creates the model and optionally compiles it directly.

Parameters:

Name Type Description Default
do_compile bool

If True the model is compiled directly. Default: True.

True
compile_folder_name str

Name of the folder in which the model is compiled. Default: value from initialization.

None
Source code in CompNeuroPy/full_models/bgm_22/bgm.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def create(self, do_compile=True, compile_folder_name=None):
    """
    Creates the model and optionally compiles it directly.

    Args:
        do_compile (bool, optional):
            If True the model is compiled directly. Default: True.
        compile_folder_name (str, optional):
            Name of the folder in which the model is compiled. Default: value from
            initialization.
    """
    ### create the model, but do not compile to set parameters before compilation
    super().create(do_compile=False, compile_folder_name=compile_folder_name)

    ### update names of compartments and parameters
    self._add_name_appendix()

    ### set parameters and connectivity of projections
    ### for each projection the connectivity has to be defined in the params
    self._set_params()
    self._set_noise_values()
    self._set_connections()

    ### compile the model, after setting all parameters (included in compile state)
    if do_compile:
        self.compile(compile_folder_name)

CompNeuroPy.full_models.HHmodelBischop #

Bases: CompNeuroModel

Generates a single population of the Hodgkin & Huxley neuron model of Bischop et al. (2012) and optionally creates/compiles the network.

Source code in CompNeuroPy/full_models/hodgkin_huxley_single_pop.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class HHmodelBischop(CompNeuroModel):
    """
    Generates a single population of the Hodgkin & Huxley neuron model of
    [Bischop et al. (2012)](https://doi.org/10.3389/fnmol.2012.00078) and optionally
    creates/compiles the network.
    """

    def __init__(
        self,
        pop_size=1,
        conductance_based_synapses=False,
        name="single_HH_Bischop",
        do_create=True,
        do_compile=True,
        compile_folder_name="annarchy_single_HH_Bischop",
    ):
        """
        Args:
            pop_size (int, optional):
                Number of neurons in the population. Default: 1.
            conductance_based_synapses (bool, optional):
                Whether the equations contain conductance based synapses for AMPA and
                GABA. Default: False.
            name (str, optional):
                Name of the model. Default: "single_HH_Bischop".
            do_create (bool, optional):
                Whether to create the model. Default: True.
            do_compile (bool, optional):
                Whether to compile the model. Default: True.
            compile_folder_name (str, optional):
                Name of the folder for the compiled model.
                Default: "annarchy_single_HH_Bischop".
        """
        ### set attributes
        self.pop_size = pop_size
        self.conductance_based_synapses = conductance_based_synapses
        # define description
        description = """
            One population "HH_Bischop" with a single neuron of the Hodgkin
            & Huxley neuron model of Bischop et al. (2012).
        """
        # initialize CompNeuroModel
        super().__init__(
            model_creation_function=self._bischop_2012_creation_function,
            name=name,
            description=description,
            do_create=do_create,
            do_compile=do_compile,
            compile_folder_name=compile_folder_name,
        )

    def _bischop_2012_creation_function(self):
        if self.conductance_based_synapses:
            ann.Population(
                self.pop_size, neuron=HHneuronBischopSyn, name="HH_Bischop_syn"
            )
        else:
            ann.Population(self.pop_size, neuron=HHneuronBischop, name="HH_Bischop")

__init__(pop_size=1, conductance_based_synapses=False, name='single_HH_Bischop', do_create=True, do_compile=True, compile_folder_name='annarchy_single_HH_Bischop') #

Parameters:

Name Type Description Default
pop_size int

Number of neurons in the population. Default: 1.

1
conductance_based_synapses bool

Whether the equations contain conductance based synapses for AMPA and GABA. Default: False.

False
name str

Name of the model. Default: "single_HH_Bischop".

'single_HH_Bischop'
do_create bool

Whether to create the model. Default: True.

True
do_compile bool

Whether to compile the model. Default: True.

True
compile_folder_name str

Name of the folder for the compiled model. Default: "annarchy_single_HH_Bischop".

'annarchy_single_HH_Bischop'
Source code in CompNeuroPy/full_models/hodgkin_huxley_single_pop.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def __init__(
    self,
    pop_size=1,
    conductance_based_synapses=False,
    name="single_HH_Bischop",
    do_create=True,
    do_compile=True,
    compile_folder_name="annarchy_single_HH_Bischop",
):
    """
    Args:
        pop_size (int, optional):
            Number of neurons in the population. Default: 1.
        conductance_based_synapses (bool, optional):
            Whether the equations contain conductance based synapses for AMPA and
            GABA. Default: False.
        name (str, optional):
            Name of the model. Default: "single_HH_Bischop".
        do_create (bool, optional):
            Whether to create the model. Default: True.
        do_compile (bool, optional):
            Whether to compile the model. Default: True.
        compile_folder_name (str, optional):
            Name of the folder for the compiled model.
            Default: "annarchy_single_HH_Bischop".
    """
    ### set attributes
    self.pop_size = pop_size
    self.conductance_based_synapses = conductance_based_synapses
    # define description
    description = """
        One population "HH_Bischop" with a single neuron of the Hodgkin
        & Huxley neuron model of Bischop et al. (2012).
    """
    # initialize CompNeuroModel
    super().__init__(
        model_creation_function=self._bischop_2012_creation_function,
        name=name,
        description=description,
        do_create=do_create,
        do_compile=do_compile,
        compile_folder_name=compile_folder_name,
    )

CompNeuroPy.full_models.HHmodelCorbit #

Bases: CompNeuroModel

Generates a single population of the Hodgkin & Huxley neuron model of Corbit et al. (2016) and optionally creates/compiles the network.

Source code in CompNeuroPy/full_models/hodgkin_huxley_single_pop.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
class HHmodelCorbit(CompNeuroModel):
    """
    Generates a single population of the Hodgkin & Huxley neuron model of
    [Corbit et al. (2016)](https://doi.org/10.1523/JNEUROSCI.0339-16.2016) and
    optionally creates/compiles the network.
    """

    def __init__(
        self,
        pop_size=1,
        conductance_based_synapses=False,
        name="single_HH_Corbit",
        do_create=True,
        do_compile=True,
        compile_folder_name="annarchy_single_HH_Corbit",
    ):
        """
        Args:
            pop_size (int, optional):
                Number of neurons in the population. Default: 1.
            conductance_based_synapses (bool, optional):
                Whether the equations contain conductance based synapses for AMPA and
                GABA. Default: False.
            name (str, optional):
                Name of the model. Default: "single_HH_Corbit".
            do_create (bool, optional):
                Whether to create the model. Default: True.
            do_compile (bool, optional):
                Whether to compile the model. Default: True.
            compile_folder_name (str, optional):
                Name of the folder for the compiled model.
                Default: "annarchy_single_HH_Corbit".
        """
        ### set attributes
        self.pop_size = pop_size
        self.conductance_based_synapses = conductance_based_synapses
        # define description
        description = """
            One population "HH_Bischop" with a single neuron of the Hodgkin
            & Huxley neuron model of Bischop et al. (2012).
        """
        # initialize CompNeuroModel
        super().__init__(
            model_creation_function=self._model_creation_function,
            name=name,
            description=description,
            do_create=do_create,
            do_compile=do_compile,
            compile_folder_name=compile_folder_name,
        )

    def _model_creation_function(self):
        if self.conductance_based_synapses:
            ann.Population(
                self.pop_size, neuron=HHneuronCorbitSyn, name="HH_Corbit_syn"
            )
        else:
            ann.Population(self.pop_size, neuron=HHneuronCorbit, name="HH_Corbit")

__init__(pop_size=1, conductance_based_synapses=False, name='single_HH_Corbit', do_create=True, do_compile=True, compile_folder_name='annarchy_single_HH_Corbit') #

Parameters:

Name Type Description Default
pop_size int

Number of neurons in the population. Default: 1.

1
conductance_based_synapses bool

Whether the equations contain conductance based synapses for AMPA and GABA. Default: False.

False
name str

Name of the model. Default: "single_HH_Corbit".

'single_HH_Corbit'
do_create bool

Whether to create the model. Default: True.

True
do_compile bool

Whether to compile the model. Default: True.

True
compile_folder_name str

Name of the folder for the compiled model. Default: "annarchy_single_HH_Corbit".

'annarchy_single_HH_Corbit'
Source code in CompNeuroPy/full_models/hodgkin_huxley_single_pop.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def __init__(
    self,
    pop_size=1,
    conductance_based_synapses=False,
    name="single_HH_Corbit",
    do_create=True,
    do_compile=True,
    compile_folder_name="annarchy_single_HH_Corbit",
):
    """
    Args:
        pop_size (int, optional):
            Number of neurons in the population. Default: 1.
        conductance_based_synapses (bool, optional):
            Whether the equations contain conductance based synapses for AMPA and
            GABA. Default: False.
        name (str, optional):
            Name of the model. Default: "single_HH_Corbit".
        do_create (bool, optional):
            Whether to create the model. Default: True.
        do_compile (bool, optional):
            Whether to compile the model. Default: True.
        compile_folder_name (str, optional):
            Name of the folder for the compiled model.
            Default: "annarchy_single_HH_Corbit".
    """
    ### set attributes
    self.pop_size = pop_size
    self.conductance_based_synapses = conductance_based_synapses
    # define description
    description = """
        One population "HH_Bischop" with a single neuron of the Hodgkin
        & Huxley neuron model of Bischop et al. (2012).
    """
    # initialize CompNeuroModel
    super().__init__(
        model_creation_function=self._model_creation_function,
        name=name,
        description=description,
        do_create=do_create,
        do_compile=do_compile,
        compile_folder_name=compile_folder_name,
    )