Deep Brain Stimulation in the Globus Pallidus internus
Promotes Habitual Behavior by Modulating Cortico-
Thalamic Shortcuts and Basal Ganglia Plasticity
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DBS Promoting Habitual Behavior Experimental Procedure
Although deep brain stimulation (DBS) is a widely used
treatment with several known effects on stimulated We simulated a two-choice reward reversal-
[ c tissue [1], the precise mechanisms by which it learning task based on De A Marcelino et al.
ortex . : . : : . .
Influences basal ganglia function remain unclear. In our (2023)l"1 to replicate patients behavior [8].
recent studies [2-5], we explored how the basal ganglia Each simulation had 120 trials, divided into
GPi-DBS guide learning in slower cortico-thalamic or cortico- Choice Delay e three sessions of 40 trials. At the start of each
cortical connections via reward-based learning, (max 3 s) e = trial, a 100 ms period without input is followed
Basal Ganglia] contributing to habitual behavior. Both the basal ganglia At by inputs to the cortex, simulating the
L Y and these connections influence decision-making, Input presentation of two fractals (Options). The
Reward- Habit raising questions about their balance. We propose that '(3)91'33’ model selects a fractal when a cortical
guided Behavior deep brain stimulation (DBS) in the basal ganglia (0.1's) ,aion“ : neuron's firing rate exceeds a threshold or
Behavior regulates this balance, reducing basal ganglia influence after 3000 ms (Choice). The Outcome is
and amplifying cortico-thalamic shortcuts’. This aligns R Instantaneous and reward probabillities start at
[ Ul with the informational lesion hypothesis of DBS effects 80:20 and reverse to 20:80 after 60 trials,
[6]. We propose that DBS in the GPi promotes habitual prompting the model to adapt.
behavior by diminishing reward-guided behavior.
\ J \ Yy
4 N 4 N
Model Different DBS Variants
- [ The target for DBS was the
] N GPi. We implemented four
Afferent Axons distinct effects of DBS, each
of which can be activated or
deactivated independently:
« stimulation of all afferent
(Corin) (Cor gec) ; axXons y
Cortex _ rate-coded neurons Soma Passing Axons . :l(r;nu;atlon of all efferent
- neurosimulator ANNarchy [9] T .
Thalamus - Cor. population encodes . s_tlmulatlon of  passing
n . fibers (from GPe to STN),
presentation of fractals . !
. e suppression of soma firing
- Corg.. population encodes rates
: StrD1 StrD2 StrThal choice | | Efferent Axons ]
: ' ' - reward-guided (i.e., Each variant of DBS
i STN GPe dopamine-modulated) . .
I L . | | produces unigue changes in
| plasticity within basal ganglia Lo
I . - the network's firing rates.
I - learning rewarded
: associations
: - bypassing cortico-thalamic
| shortcut with simple Hebbian suppression efferent afferent passing-fibers dbs-all
TR GPi learning IT - - - - -
- trained by basal ganglia StrD1 + 7 7 7 7
excitatory — fixe d Choices StrD2 - - = - .
) inhibitory == = w3 stic STN - - - - -
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Synaptic Plasticity in Cortico — Thalamic Shortcut DBS ON vs. OFF
25
30 = dbs-on Patients Patients tend to make more
. At i i~ B dbs-off
m oo | e S e cheeg e | | E
- MOde: e ﬁhortwt conditions  identical led ptog fewer o the third session when DBS s
o 25 7 Model Fixed Shortcut el . . .2 15- ON. Similarly, our model reflects
= unrewarded decisions in the third session. 09 .
[ . . - this tendency across most DBS
a This shows that a plastic shortcut s~ 10- : . .
'S5 . . . variants. After increasing the
o 20 - promotes  habitual  behavior, l.e., . .
o . . . . number of simulations, the
persistence in previously favored choices. > , D ,
T . . . suppression,’ 'efferent,’ and
0 | This could also clarify why patients made , , .
T . . . 25 _ dbs-all' variants show a
s 15 - more unrewarded decisions in the third suppression o .
= . . . . . efforent Model significant difference between
than in the first session, despite the first T - - .
c I session involving the uncertainty of initial T € I I I .
= . ) = dbs-all I session. Our model suggests
10 - learning. In contrast, by the start of the w 15 - :
. . . 2.5 that DBS shifts the balance
I third session, 20 trials had already been 03 .
. . cT I between reward-guided and
completed since the reversal, allowing the s ~ 10 A . . .
. . . . habitual behavior, leading to
S reward contingencies prevalent in session e
1 2 3 3 10 be learned 5 more unrewarded decisions
Session | 1 2 3 following the reversal.
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\, S \, J
[ N ( )
References Acknowledgements
[1] Neumann, W.-J., Steiner, L. A., & Milosevic, L. (2023). Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain, awad239. This work was supported by the Deutsche

[2] Baladron, J., & Hamker, F. H. (2020). Habit learning in hierarchical cortex—basal ganglia loops. European Journal of Neuroscience, 52(12), 4613—-4638. - -
[3] Scholl, C., Baladron, J., Vitay, J., & Hamker, F. H. (2022). Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model. Forschungs_gemelnschaft (DFG)_ SPP'_2941 CompUtathnal
Brain Structure and Function, 227(3), 1031-1050. Connectomics as part of the project Clinical Connectomics:
[4] Schroll, H., Vitay, J., & Hamker, F. H. (2014). Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. European Journal of Neur_oscience,_39(4), 688-702. | A network approach to deep brain stimulation (DFG
[5] Villagrasa, F., Baladron, J., Vitay, J., Schroll, H., Antzoulatos, E. G., Miller, E. K., & Hamker, F. H. (2018). On the Role of Cortex-Basal Ganglia Interactions for Category Learning: A HA2630/11-2)
Neurocomputational Approach. Journal of Neuroscience, 38(44), 9551-9562. '
[6] Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137.

[7] de A Marcelino, A. L., Gray, O., Al-Fatly, B., Gilmour, W., Douglas Steele, J., Kuhn, A. A., & Gilbertson, T. (2023). Pallidal neuromodulation of the explore/exploit trade-off in decision- @ _ _ _ _ _
making. eLife, 12, e79642. ) oliver.maith@informatik.tu-chemnitz.de
[8] Maith, O., Apenburg, D., & Hamker, F. (2024). Pallidal deep brain stimulation enhances habitual behavior in a neuro-computational basal ganglia model during a reward
reversal learning task. (submitted) @E - ) - : -
[9] Vitay, J., Dinkelbach, H., & Hamker, F. (2015). ANNarchy: A code generation approach to neural simulations on parallel hardware. Frontiers in Neuroinformatics, 9(19), 1-20. oliver-maith.github.io




	Folie 1

