Skip to content

Extra Functions

Cmap #

Class to create a colormap with a given name and range. The colormap can be called with a value between 0 and 1 to get the corresponding rgb value.

Source code in CompNeuroPy/extra_functions.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class Cmap:
    """
    Class to create a colormap with a given name and range. The colormap can be called
    with a value between 0 and 1 to get the corresponding rgb value.
    """

    def __init__(self, cmap_name, vmin, vmax):
        """
        Args:
            cmap_name (str):
                Name of the colormap
            vmin (float):
                Lower limit of the colormap
            vmax (float):
                Upper limit of the colormap
        """
        self.cmap_name = cmap_name
        self.cmap = plt.get_cmap(cmap_name)
        self.norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
        self.scalarMap = cm.ScalarMappable(norm=self.norm, cmap=self.cmap)

    def __call__(self, x, alpha=1):
        """
        Returns the rgba value of the colormap at the given value.

        Args:
            x (float):
                Value between 0 and 1
            alpha (float):
                Alpha value of the rgba value

        Returns:
            rgba (tuple):
                RGBA value of the colormap at the given value
        """
        vals = self.get_rgb(x)
        if isinstance(vals, tuple):
            vals = vals[:3] + (alpha,)
        else:
            vals[:, -1] = alpha
        return vals

    def get_rgb(self, val):
        """
        Returns the rgb value of the colormap at the given value.

        Args:
            val (float):
                Value between 0 and 1

        Returns:
            rgb (tuple):
                RGB value of the colormap at the given value
        """
        return self.scalarMap.to_rgba(val)

__init__(cmap_name, vmin, vmax) #

Parameters:

Name Type Description Default
cmap_name str

Name of the colormap

required
vmin float

Lower limit of the colormap

required
vmax float

Upper limit of the colormap

required
Source code in CompNeuroPy/extra_functions.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def __init__(self, cmap_name, vmin, vmax):
    """
    Args:
        cmap_name (str):
            Name of the colormap
        vmin (float):
            Lower limit of the colormap
        vmax (float):
            Upper limit of the colormap
    """
    self.cmap_name = cmap_name
    self.cmap = plt.get_cmap(cmap_name)
    self.norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    self.scalarMap = cm.ScalarMappable(norm=self.norm, cmap=self.cmap)

__call__(x, alpha=1) #

Returns the rgba value of the colormap at the given value.

Parameters:

Name Type Description Default
x float

Value between 0 and 1

required
alpha float

Alpha value of the rgba value

1

Returns:

Name Type Description
rgba tuple

RGBA value of the colormap at the given value

Source code in CompNeuroPy/extra_functions.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def __call__(self, x, alpha=1):
    """
    Returns the rgba value of the colormap at the given value.

    Args:
        x (float):
            Value between 0 and 1
        alpha (float):
            Alpha value of the rgba value

    Returns:
        rgba (tuple):
            RGBA value of the colormap at the given value
    """
    vals = self.get_rgb(x)
    if isinstance(vals, tuple):
        vals = vals[:3] + (alpha,)
    else:
        vals[:, -1] = alpha
    return vals

get_rgb(val) #

Returns the rgb value of the colormap at the given value.

Parameters:

Name Type Description Default
val float

Value between 0 and 1

required

Returns:

Name Type Description
rgb tuple

RGB value of the colormap at the given value

Source code in CompNeuroPy/extra_functions.py
196
197
198
199
200
201
202
203
204
205
206
207
208
def get_rgb(self, val):
    """
    Returns the rgb value of the colormap at the given value.

    Args:
        val (float):
            Value between 0 and 1

    Returns:
        rgb (tuple):
            RGB value of the colormap at the given value
    """
    return self.scalarMap.to_rgba(val)

DecisionTree #

Class to create a decision tree.

Source code in CompNeuroPy/extra_functions.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
class DecisionTree:
    """
    Class to create a decision tree.
    """

    def __init__(self):
        """
        Create a new empty decision tree.
        """
        ### node list is a list of lists
        ### first idx = level of tree
        ### second idx = all nodes in the level
        self.node_list = [[]]

    def node(self, parent=None, prob=0, name=None):
        """
        Create a new node in the decision tree.

        Args:
            parent (node object):
                Parent node of the new node
            prob (float):
                Probability of the new node
            name (str):
                Name of the new node

        Returns:
            new_node (node object):
                The new node
        """

        ### create new node
        new_node = DecisionTreeNode(tree=self, parent=parent, prob=prob, name=name)
        ### add it to node_list
        if len(self.node_list) == new_node.level:
            self.node_list.append([])
        self.node_list[new_node.level].append(new_node)
        ### return the node object
        return new_node

    def get_path_prod(self, name):
        """
        Get the path and path product of a node with a given name.

        Args:
            name (str):
                Name of the node

        Returns:
            path (str):
                Path to the node
            path_prod (float):
                Path product of the node
        """

        ### search for all nodes with name
        ### start from behind
        search_node_list = []
        path_list = []
        path_prod_list = []
        for level in range(len(self.node_list) - 1, -1, -1):
            for node in self.node_list[level]:
                if node.name == name:
                    search_node_list.append(node)
        ### get the paths and path products for the found nodes
        for node in search_node_list:
            path, path_prod = self._get_path_prod_rec(node)
            path_list.append(path)
            path_prod_list.append(path_prod)
        ### return the paths and path products
        return [
            [path_list[idx], path_prod_list[idx]]
            for idx in range(len(search_node_list))
        ]

    def _get_path_prod_rec(self, node):
        """
        Recursive function to get the path and path product of a node.

        Args:
            node (node object):
                Node to get the path and path product of

        Returns:
            path_str (str):
                Path to the node
            prob (float):
                Path product of the node
        """
        node: DecisionTreeNode = node

        if node.parent == None:
            return ["/" + node.name, node.prob]
        else:
            path_str, prob = self._get_path_prod_rec(node.parent)
            return [path_str + "/" + node.name, prob * node.prob]

__init__() #

Create a new empty decision tree.

Source code in CompNeuroPy/extra_functions.py
374
375
376
377
378
379
380
381
def __init__(self):
    """
    Create a new empty decision tree.
    """
    ### node list is a list of lists
    ### first idx = level of tree
    ### second idx = all nodes in the level
    self.node_list = [[]]

node(parent=None, prob=0, name=None) #

Create a new node in the decision tree.

Parameters:

Name Type Description Default
parent node object

Parent node of the new node

None
prob float

Probability of the new node

0
name str

Name of the new node

None

Returns:

Name Type Description
new_node node object

The new node

Source code in CompNeuroPy/extra_functions.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def node(self, parent=None, prob=0, name=None):
    """
    Create a new node in the decision tree.

    Args:
        parent (node object):
            Parent node of the new node
        prob (float):
            Probability of the new node
        name (str):
            Name of the new node

    Returns:
        new_node (node object):
            The new node
    """

    ### create new node
    new_node = DecisionTreeNode(tree=self, parent=parent, prob=prob, name=name)
    ### add it to node_list
    if len(self.node_list) == new_node.level:
        self.node_list.append([])
    self.node_list[new_node.level].append(new_node)
    ### return the node object
    return new_node

get_path_prod(name) #

Get the path and path product of a node with a given name.

Parameters:

Name Type Description Default
name str

Name of the node

required

Returns:

Name Type Description
path str

Path to the node

path_prod float

Path product of the node

Source code in CompNeuroPy/extra_functions.py
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def get_path_prod(self, name):
    """
    Get the path and path product of a node with a given name.

    Args:
        name (str):
            Name of the node

    Returns:
        path (str):
            Path to the node
        path_prod (float):
            Path product of the node
    """

    ### search for all nodes with name
    ### start from behind
    search_node_list = []
    path_list = []
    path_prod_list = []
    for level in range(len(self.node_list) - 1, -1, -1):
        for node in self.node_list[level]:
            if node.name == name:
                search_node_list.append(node)
    ### get the paths and path products for the found nodes
    for node in search_node_list:
        path, path_prod = self._get_path_prod_rec(node)
        path_list.append(path)
        path_prod_list.append(path_prod)
    ### return the paths and path products
    return [
        [path_list[idx], path_prod_list[idx]]
        for idx in range(len(search_node_list))
    ]

DecisionTreeNode #

Class to create a node in a decision tree.

Source code in CompNeuroPy/extra_functions.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
class DecisionTreeNode:
    """
    Class to create a node in a decision tree.
    """

    id_counter = 0

    def __init__(self, tree: DecisionTree, parent=None, prob=0, name=""):
        """
        Create a new node in a decision tree.

        Args:
            tree (DecisionTree object):
                Decision tree the node belongs to
            parent (node object):
                Parent node of the new node
            prob (float):
                Probability of the new node
            name (str):
                Name of the new node
        """
        self.tree = tree
        parent: DecisionTreeNode = parent
        self.parent = parent
        self.prob = prob
        self.name = name
        self.id = int(self.id_counter)
        self.id_counter += 1
        if parent != None:
            self.level = int(parent.level + 1)
        else:
            self.level = int(0)

    def add(self, name, prob):
        """
        Add a child node to the node.

        Args:
            name (str):
                Name of the new node
            prob (float):
                Probability of the new node

        Returns:
            new_node (node object):
                The new node
        """

        return self.tree.node(parent=self, prob=prob, name=name)

    def get_path_prod(self):
        """
        Get the path and path product of the node.

        Returns:
            path (str):
                Path to the node
            path_prod (float):
                Path product of the node
        """
        return self.tree._get_path_prod_rec(self)

__init__(tree, parent=None, prob=0, name='') #

Create a new node in a decision tree.

Parameters:

Name Type Description Default
tree DecisionTree object

Decision tree the node belongs to

required
parent node object

Parent node of the new node

None
prob float

Probability of the new node

0
name str

Name of the new node

''
Source code in CompNeuroPy/extra_functions.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def __init__(self, tree: DecisionTree, parent=None, prob=0, name=""):
    """
    Create a new node in a decision tree.

    Args:
        tree (DecisionTree object):
            Decision tree the node belongs to
        parent (node object):
            Parent node of the new node
        prob (float):
            Probability of the new node
        name (str):
            Name of the new node
    """
    self.tree = tree
    parent: DecisionTreeNode = parent
    self.parent = parent
    self.prob = prob
    self.name = name
    self.id = int(self.id_counter)
    self.id_counter += 1
    if parent != None:
        self.level = int(parent.level + 1)
    else:
        self.level = int(0)

add(name, prob) #

Add a child node to the node.

Parameters:

Name Type Description Default
name str

Name of the new node

required
prob float

Probability of the new node

required

Returns:

Name Type Description
new_node node object

The new node

Source code in CompNeuroPy/extra_functions.py
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
def add(self, name, prob):
    """
    Add a child node to the node.

    Args:
        name (str):
            Name of the new node
        prob (float):
            Probability of the new node

    Returns:
        new_node (node object):
            The new node
    """

    return self.tree.node(parent=self, prob=prob, name=name)

get_path_prod() #

Get the path and path product of the node.

Returns:

Name Type Description
path str

Path to the node

path_prod float

Path product of the node

Source code in CompNeuroPy/extra_functions.py
517
518
519
520
521
522
523
524
525
526
527
def get_path_prod(self):
    """
    Get the path and path product of the node.

    Returns:
        path (str):
            Path to the node
        path_prod (float):
            Path product of the node
    """
    return self.tree._get_path_prod_rec(self)

DeapCma #

Class to run the deap Covariance Matrix Adaptation Evolution Strategy optimization.

Using the CMAES algorithm from deap

  • Fortin, F. A., De Rainville, F. M., Gardner, M. A. G., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13(1), 2171-2175. pdf

Attributes:

Name Type Description
deap_dict dict

Dictionary containing the toolbox, the hall of fame, the statistics, the lower and upper bounds, the parameter names, the inverse scaler and the strategy.

Example

For complete example see here

from CompNeuroPy import DeapCma
import numpy as np


### for DeapCma we need to define the evaluate_function
def evaluate_function(population):
    loss_list = []
    ### the population is a list of individuals which are lists of parameters
    for individual in population:
        loss_of_individual = float(individual[0] + individual[1] + individual[2])
        loss_list.append((loss_of_individual,))
    return loss_list


### define lower bounds of paramters to optimize
lb = np.array([0, 0, 0])

### define upper bounds of paramters to optimize
ub = np.array([10, 10, 10])

### create an "minimal" instance of the DeapCma class
deap_cma = DeapCma(
    lower=lb,
    upper=ub,
    evaluate_function=evaluate_function,
)

### run the optimization
deap_cma_result = deap_cma.run(max_evals=1000)

Source code in CompNeuroPy/extra_functions.py
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
class DeapCma:
    """
    Class to run the deap Covariance Matrix Adaptation Evolution Strategy optimization.

    Using the [CMAES](https://deap.readthedocs.io/en/master/api/algo.html#module-deap.cma) algorithm from [deap](https://github.com/deap/deap)

    * Fortin, F. A., De Rainville, F. M., Gardner, M. A. G., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13(1), 2171-2175. [pdf](https://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf)

    Attributes:
        deap_dict (dict):
            Dictionary containing the toolbox, the hall of fame, the statistics, the
            lower and upper bounds, the parameter names, the inverse scaler and the
            strategy.

    Example:
        For complete example see [here](../examples/deap_cma.md)
        ```python
        from CompNeuroPy import DeapCma
        import numpy as np


        ### for DeapCma we need to define the evaluate_function
        def evaluate_function(population):
            loss_list = []
            ### the population is a list of individuals which are lists of parameters
            for individual in population:
                loss_of_individual = float(individual[0] + individual[1] + individual[2])
                loss_list.append((loss_of_individual,))
            return loss_list


        ### define lower bounds of paramters to optimize
        lb = np.array([0, 0, 0])

        ### define upper bounds of paramters to optimize
        ub = np.array([10, 10, 10])

        ### create an "minimal" instance of the DeapCma class
        deap_cma = DeapCma(
            lower=lb,
            upper=ub,
            evaluate_function=evaluate_function,
        )

        ### run the optimization
        deap_cma_result = deap_cma.run(max_evals=1000)
        ```
    """

    @check_types()
    def __init__(
        self,
        lower: np.ndarray,
        upper: np.ndarray,
        evaluate_function: Callable,
        max_evals: None | int = None,
        p0: None | np.ndarray = None,
        sig0: None | float = None,
        param_names: None | list[str] = None,
        learn_rate_factor: float = 1,
        damping_factor: float = 1,
        verbose: bool = False,
        plot_file: None | str = None,
        cma_params_dict: dict = {},
        source_solutions: list[tuple[np.ndarray, float]] = [],
        hard_bounds: bool = False,
        display_progress_bar: bool = True,
    ):
        """

        Args:
            lower (np.ndarray):
                Lower bounds of the parameters
            upper (np.ndarray):
                Upper bounds of the parameters
            evaluate_function (Callable):
                Function evaluating the losses of a population of individuals. Return value
                should be a list of tuples with the losses of the individuals.
            max_evals (int, optional):
                Maximum number of evaluations. If not given here, it has to be given in
                the run function. By default None.
            p0 (None | np.ndarray, optional):
                Initial guess for the parameters. By default the mean of lower and upper
                bounds.
            sig0 (None | float, optional):
                Initial guess for the standard deviation of the parameters. It will be
                scaled by the range of the parameters. By default 0.25, i.e. 25% of the
                range (for each parameter).
            param_names (None | list[str], optional):
                Names of the parameters. By default None, i.e. the parameters are named
                "param0", "param1", ...
            learn_rate_factor (float, optional):
                Learning rate factor (decrease -> slower). By default 1.
            damping_factor (float, optional):
                Damping factor (increase -> slower). By default 1.
            verbose (bool, optional):
                Whether or not to print details. By default False.
            plot_file (None | str, optional):
                File to save the deap plot to. If not given here, it has to be given in
                the run function. By default None.
            cma_params_dict (dict, optional):
                Parameters for the deap cma strategy (deap.cma.Strategy). See [here](https://deap.readthedocs.io/en/master/api/algo.html#deap.cma.Strategy) for more
                details
            source_solutions (list[tuple[np.ndarray, float]], optional):
                List of tuples with the parameters and losses of source solutions. These
                solutions are used to initialize the covariance matrix. Using source
                solutions ignores the initial guess p0 and sets the cma parameter
                'cmatrix' (which will also be ignored if given in cma_params_dict). By
                default [].
            hard_bounds (bool, optional):
                Whether or not to use hard bounds (parmeters are clipped to lower and
                upper bounds). By default False.
            display_progress_bar (bool, optional):
                Whether or not to display a progress bar. By default True.
        """
        ### store attributes
        self.max_evals = max_evals
        self.lower = lower
        self.upper = upper
        self.evaluate_function = evaluate_function
        self.p0 = p0
        self.sig0 = sig0
        self.param_names = param_names
        self.learn_rate_factor = learn_rate_factor
        self.damping_factor = damping_factor
        self.verbose = verbose
        self.plot_file = plot_file
        self.cma_params_dict = cma_params_dict
        self.source_solutions = source_solutions
        self.hard_bounds = hard_bounds
        self.display_progress_bar = display_progress_bar

        ### prepare the optimization
        self.deap_dict = self._prepare()

    def _prepare(self):
        """
        Prepares the deap Covariance Matrix Adaptation Evolution Strategy optimization.

        Returns:
            dict:
                Dictionary containing the toolbox, the hall of fame, the statistics, the
                lower and upper bounds, the parameter names, the inverse scaler and the
                strategy.
        """

        ### get attributes
        lower = self.lower
        upper = self.upper
        evaluate_function = self.evaluate_function
        p0 = self.p0
        sig0 = self.sig0
        param_names = self.param_names
        learn_rate_factor = self.learn_rate_factor
        damping_factor = self.damping_factor
        verbose = self.verbose
        cma_params_dict = self.cma_params_dict

        ### create scaler to scale parameters into range [0,1] based on lower and upper bounds
        upper_orig = deepcopy(upper)
        lower_orig = deepcopy(lower)

        def scaler(x, diff=False):
            if not diff:
                return (x - lower_orig) / (upper_orig - lower_orig)
            else:
                return x / (upper_orig - lower_orig)

        ### create inverse scaler to scale parameters back into original range [lower,upper]
        def inv_scaler(x, diff=False):
            if not diff:
                return x * (upper_orig - lower_orig) + lower_orig
            else:
                return x * (upper_orig - lower_orig)

        ### scale upper and lower bounds
        lower = scaler(lower)
        upper = scaler(upper)

        ### create the individual class, since this is eventually called multiple times
        ### deactivate warnings (it warns that the classes already exist)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
            creator.create("Individual", list, fitness=creator.FitnessMin)

        ### create the toolbox
        toolbox = base.Toolbox()
        ### function calculating losses from individuals (from whole population)
        toolbox.register("evaluate", evaluate_function)
        ### search strategy
        ### warm start with initial source solutions
        if len(self.source_solutions) > 0:
            ### scale source solutions
            for source_solution_idx in range(len(self.source_solutions)):
                self.source_solutions[source_solution_idx] = (
                    scaler(self.source_solutions[source_solution_idx][0]),
                    self.source_solutions[source_solution_idx][1],
                )
            centroid, sigma, cmatrix = cmaes.get_warm_start_mgd(
                source_solutions=self.source_solutions,
                gamma=1,
            )
            cma_params_dict["cmatrix"] = cmatrix

            if self.hard_bounds:
                ### clip centroid to [0,1]
                centroid = np.clip(centroid, 0, 1)
        else:
            ### lower + upper / 2 is always 0.5 since lower and upper are scaled
            centroid = (
                (lower + upper) / 2
                if isinstance(p0, type(None))
                else (
                    scaler(np.clip(p0, lower, upper))
                    if self.hard_bounds
                    else scaler(p0)
                )
            )
            sigma = 0.25 if isinstance(sig0, type(None)) else sig0

        ### create the strategy
        strategy = cma.Strategy(
            centroid=centroid,
            sigma=sigma,
            **cma_params_dict,
        )

        if verbose:
            print(
                f"Starting optimization with:\ncentroid: {inv_scaler(strategy.centroid)}, (scaled: {strategy.centroid})\nsigma: {inv_scaler(strategy.sigma,diff=True)}, (scaled: {strategy.sigma})"
            )

        ### slow down the learning rate and increase the damping
        strategy.ccov1 *= learn_rate_factor
        strategy.ccovmu *= learn_rate_factor
        strategy.damps *= damping_factor  # TODO what slows down?
        if verbose:
            print(
                f"lambda (The number of children to produce at each generation): {strategy.lambda_}"
            )
            print(
                f"mu (The number of parents to keep from the lambda children): {strategy.mu}"
            )
            print(f"weights: {strategy.weights}")
            print(f"mueff: {strategy.mueff}")
            print(f"ccum (Cumulation constant for covariance matrix.): {strategy.cc}")
            print(f"cs (Cumulation constant for step-size): {strategy.cs}")
            print(f"ccov1 (Learning rate for rank-one update): {strategy.ccov1}")
            print(f"ccovmu (Learning rate for rank-mu update): {strategy.ccovmu}")
            print(f"damps (Damping for step-size): {strategy.damps}")
        ### function generating a population during optimization
        toolbox.register("generate", strategy.generate, creator.Individual)
        ### function updating the search strategy
        toolbox.register("update", strategy.update)
        ### hall of fame to track best individual i.e. parameters
        hof = tools.HallOfFame(1)
        ### statistics to track evolution of loss
        stats = tools.Statistics(lambda ind: ind.fitness.values)
        stats.register("avg", np.mean)
        stats.register("std", np.std)
        stats.register("min", np.min)
        stats.register("max", np.max)

        return {
            "toolbox": toolbox,
            "hof": hof,
            "stats": stats,
            "lower": lower,
            "upper": upper,
            "param_names": param_names,
            "inv_scaler": inv_scaler,
            "strategy": strategy,
            "hard_bounds": self.hard_bounds,
        }

    def run(
        self,
        max_evals: None | int = None,
        verbose: None | bool = None,
        plot_file: None | str = None,
    ):
        """
        Runs the optimization with deap.

        Args:
            max_evals (int):
                Number of runs (here generations) a single optimization performs. By
                default None, i.e. the value from the initialization is used.
            verbose (bool, optional):
                Whether or not to print details. By default None, i.e. the value from
                the initialization is used.
            plot_file (str):
                Path to save the logbook plot to. By default None, i.e. the value from
                the initialization is used.

        Returns:
            best (dict):
                Dictionary containing the best parameters (as key and value pairs),
                the logbook of the optimization (key = 'logbook'), the last population
                of individuals (key = 'deap_pop') and the best fitness (key =
                'best_fitness').
        """

        ### get attributes
        max_evals = self.max_evals if max_evals is None else max_evals
        verbose = self.verbose if verbose is None else verbose
        plot_file = self.plot_file if plot_file is None else plot_file
        deap_dict = self.deap_dict

        ### run the search algorithm with the prepared deap_dict
        pop, logbook = self._deap_ea_generate_update(
            deap_dict,
            ngen=max_evals,
            verbose=verbose,
        )

        ### scale parameters of hall of fame back into original range [lower,upper]
        hof_final = deap_dict["inv_scaler"](deap_dict["hof"][0])
        best_fitness = deap_dict["hof"][0].fitness.values[0]

        ### get best parameters, last population of inidividuals and logbook
        best = {}
        for param_idx in range(len(deap_dict["lower"])):
            if deap_dict["param_names"] is not None:
                param_key = deap_dict["param_names"][param_idx]
            else:
                param_key = f"param{param_idx}"
            best[param_key] = hof_final[param_idx]
        best["logbook"] = logbook
        best["deap_pop"] = pop
        best["best_fitness"] = best_fitness

        ### skip plotting if plot_file is None
        if plot_file is None:
            return best

        ### plot logbook with logaritmic y-axis
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.set_yscale("log")
        ax.plot(logbook.select("gen"), logbook.select("min"), label="min")
        ax.plot(logbook.select("gen"), logbook.select("avg"), label="avg")
        ax.plot(logbook.select("gen"), logbook.select("max"), label="max")
        ax.legend()
        ax.set_xlabel("Generation")
        ax.set_ylabel("Loss")
        fig.tight_layout()
        sf.create_dir("/".join(plot_file.split("/")[:-1]))
        fig.savefig(plot_file, dpi=300)
        plt.close(fig)

        return best

    def _deap_ea_generate_update(
        self,
        deap_dict: dict,
        ngen: int,
        verbose: bool = False,
    ):
        """
        This function is copied from deap.algorithms.eaGenerateUpdate and modified.
        This is algorithm implements the ask-tell model proposed in
        [Colette2010]_, where ask is called `generate` and tell is called `update`.

        .. [Colette2010] Collette, Y., N. Hansen, G. Pujol, D. Salazar Aponte and
        R. Le Riche (2010). On Object-Oriented Programming of Optimizers -
        Examples in Scilab. In P. Breitkopf and R. F. Coelho, eds.:
        Multidisciplinary Design Optimization in Computational Mechanics,
        Wiley, pp. 527-565;

        Args:
            deap_dict (dict):
                Dictionary containing the deap toolbox, hall of fame, statistics, lower
                and upper bounds, parameter names, inverse scaler and strategy.
            ngen (int):
                number of runs (here generations) a single optimization performs
            verbose (bool, optional):
                Whether or not to print details. By default False.

        Returns:
            population:
                A list of individuals.
            logbook:
                A Logbook() object that contains the evolution statistics.
        """

        ### get variables from deap_dict
        toolbox = deap_dict["toolbox"]
        lower = deap_dict["lower"]
        upper = deap_dict["upper"]
        inv_scaler = deap_dict["inv_scaler"]
        stats = deap_dict["stats"]
        halloffame = deap_dict["hof"]
        strategy = deap_dict["strategy"]
        hard_bounds = deap_dict["hard_bounds"]

        ### init logbook
        logbook = tools.Logbook()
        logbook.header = ["gen", "nevals"] + (stats.fields if stats else [])

        ### define progress bar
        if verbose:
            progress_bar = range(ngen)
        elif self.display_progress_bar:
            progress_bar = tqdm(range(ngen), total=ngen, unit="gen")
        else:
            progress_bar = range(ngen)
        early_stop = False

        ### loop over generations
        for gen in progress_bar:
            ### Generate a new population
            population = toolbox.generate()
            ### clip individuals of population to variable bounds
            ### TODO only if bounds are hard
            if hard_bounds:
                for ind in population:
                    for idx, val in enumerate(ind):
                        ind[idx] = np.clip(val, lower[idx], upper[idx])
            ### Evaluate the individuals (here whole population at once)
            ### scale parameters back into original range [lower,upper]
            population_inv_scaled = [inv_scaler(ind) for ind in deepcopy(population)]
            fitnesses = toolbox.evaluate(population_inv_scaled)

            ### set fitnesses of individuals
            for ind, fit in zip(population, fitnesses):
                ind.fitness.values = fit

            ### check if nan in population
            for ind in population:
                nan_in_pop = np.isnan(ind.fitness.values[0])

            ### Update the hall of fame with the generated individuals
            if halloffame is not None and not nan_in_pop:
                halloffame.update(population)

            ### Update the strategy with the evaluated individuals
            try:
                toolbox.update(population)
            except:
                ### stop if update fails
                early_stop = True
                break

            ### Stop if diagD is too small
            if np.min(strategy.diagD) < 1e-5:
                early_stop = True
                break

            ### Append the current generation statistics to the logbook
            record = stats.compile(population) if stats is not None else {}
            logbook.record(gen=gen, nevals=len(population), **record)
            if verbose:
                ### print logbook
                print(logbook.stream)
                ### print evaluated individuals and their fitnesses
                print_dict = {
                    f"ind_{idx}": list(ind)
                    for idx, ind in enumerate(deepcopy(population_inv_scaled))
                }
                for idx, key in enumerate(print_dict):
                    print_dict[key].append(fitnesses[idx][0])
                print_df(print_dict)
                print("")

            ### update progress bar with current best loss
            if not verbose and self.display_progress_bar:
                progress_bar.set_postfix_str(
                    f"best loss: {halloffame[0].fitness.values[0]:.5f}"
                )
        if early_stop and verbose:
            print("Stopping because convergence is reached.")

        return population, logbook

__init__(lower, upper, evaluate_function, max_evals=None, p0=None, sig0=None, param_names=None, learn_rate_factor=1, damping_factor=1, verbose=False, plot_file=None, cma_params_dict={}, source_solutions=[], hard_bounds=False, display_progress_bar=True) #

Parameters:

Name Type Description Default
lower ndarray

Lower bounds of the parameters

required
upper ndarray

Upper bounds of the parameters

required
evaluate_function Callable

Function evaluating the losses of a population of individuals. Return value should be a list of tuples with the losses of the individuals.

required
max_evals int

Maximum number of evaluations. If not given here, it has to be given in the run function. By default None.

None
p0 None | ndarray

Initial guess for the parameters. By default the mean of lower and upper bounds.

None
sig0 None | float

Initial guess for the standard deviation of the parameters. It will be scaled by the range of the parameters. By default 0.25, i.e. 25% of the range (for each parameter).

None
param_names None | list[str]

Names of the parameters. By default None, i.e. the parameters are named "param0", "param1", ...

None
learn_rate_factor float

Learning rate factor (decrease -> slower). By default 1.

1
damping_factor float

Damping factor (increase -> slower). By default 1.

1
verbose bool

Whether or not to print details. By default False.

False
plot_file None | str

File to save the deap plot to. If not given here, it has to be given in the run function. By default None.

None
cma_params_dict dict

Parameters for the deap cma strategy (deap.cma.Strategy). See here for more details

{}
source_solutions list[tuple[ndarray, float]]

List of tuples with the parameters and losses of source solutions. These solutions are used to initialize the covariance matrix. Using source solutions ignores the initial guess p0 and sets the cma parameter 'cmatrix' (which will also be ignored if given in cma_params_dict). By default [].

[]
hard_bounds bool

Whether or not to use hard bounds (parmeters are clipped to lower and upper bounds). By default False.

False
display_progress_bar bool

Whether or not to display a progress bar. By default True.

True
Source code in CompNeuroPy/extra_functions.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
@check_types()
def __init__(
    self,
    lower: np.ndarray,
    upper: np.ndarray,
    evaluate_function: Callable,
    max_evals: None | int = None,
    p0: None | np.ndarray = None,
    sig0: None | float = None,
    param_names: None | list[str] = None,
    learn_rate_factor: float = 1,
    damping_factor: float = 1,
    verbose: bool = False,
    plot_file: None | str = None,
    cma_params_dict: dict = {},
    source_solutions: list[tuple[np.ndarray, float]] = [],
    hard_bounds: bool = False,
    display_progress_bar: bool = True,
):
    """

    Args:
        lower (np.ndarray):
            Lower bounds of the parameters
        upper (np.ndarray):
            Upper bounds of the parameters
        evaluate_function (Callable):
            Function evaluating the losses of a population of individuals. Return value
            should be a list of tuples with the losses of the individuals.
        max_evals (int, optional):
            Maximum number of evaluations. If not given here, it has to be given in
            the run function. By default None.
        p0 (None | np.ndarray, optional):
            Initial guess for the parameters. By default the mean of lower and upper
            bounds.
        sig0 (None | float, optional):
            Initial guess for the standard deviation of the parameters. It will be
            scaled by the range of the parameters. By default 0.25, i.e. 25% of the
            range (for each parameter).
        param_names (None | list[str], optional):
            Names of the parameters. By default None, i.e. the parameters are named
            "param0", "param1", ...
        learn_rate_factor (float, optional):
            Learning rate factor (decrease -> slower). By default 1.
        damping_factor (float, optional):
            Damping factor (increase -> slower). By default 1.
        verbose (bool, optional):
            Whether or not to print details. By default False.
        plot_file (None | str, optional):
            File to save the deap plot to. If not given here, it has to be given in
            the run function. By default None.
        cma_params_dict (dict, optional):
            Parameters for the deap cma strategy (deap.cma.Strategy). See [here](https://deap.readthedocs.io/en/master/api/algo.html#deap.cma.Strategy) for more
            details
        source_solutions (list[tuple[np.ndarray, float]], optional):
            List of tuples with the parameters and losses of source solutions. These
            solutions are used to initialize the covariance matrix. Using source
            solutions ignores the initial guess p0 and sets the cma parameter
            'cmatrix' (which will also be ignored if given in cma_params_dict). By
            default [].
        hard_bounds (bool, optional):
            Whether or not to use hard bounds (parmeters are clipped to lower and
            upper bounds). By default False.
        display_progress_bar (bool, optional):
            Whether or not to display a progress bar. By default True.
    """
    ### store attributes
    self.max_evals = max_evals
    self.lower = lower
    self.upper = upper
    self.evaluate_function = evaluate_function
    self.p0 = p0
    self.sig0 = sig0
    self.param_names = param_names
    self.learn_rate_factor = learn_rate_factor
    self.damping_factor = damping_factor
    self.verbose = verbose
    self.plot_file = plot_file
    self.cma_params_dict = cma_params_dict
    self.source_solutions = source_solutions
    self.hard_bounds = hard_bounds
    self.display_progress_bar = display_progress_bar

    ### prepare the optimization
    self.deap_dict = self._prepare()

run(max_evals=None, verbose=None, plot_file=None) #

Runs the optimization with deap.

Parameters:

Name Type Description Default
max_evals int

Number of runs (here generations) a single optimization performs. By default None, i.e. the value from the initialization is used.

None
verbose bool

Whether or not to print details. By default None, i.e. the value from the initialization is used.

None
plot_file str

Path to save the logbook plot to. By default None, i.e. the value from the initialization is used.

None

Returns:

Name Type Description
best dict

Dictionary containing the best parameters (as key and value pairs), the logbook of the optimization (key = 'logbook'), the last population of individuals (key = 'deap_pop') and the best fitness (key = 'best_fitness').

Source code in CompNeuroPy/extra_functions.py
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
def run(
    self,
    max_evals: None | int = None,
    verbose: None | bool = None,
    plot_file: None | str = None,
):
    """
    Runs the optimization with deap.

    Args:
        max_evals (int):
            Number of runs (here generations) a single optimization performs. By
            default None, i.e. the value from the initialization is used.
        verbose (bool, optional):
            Whether or not to print details. By default None, i.e. the value from
            the initialization is used.
        plot_file (str):
            Path to save the logbook plot to. By default None, i.e. the value from
            the initialization is used.

    Returns:
        best (dict):
            Dictionary containing the best parameters (as key and value pairs),
            the logbook of the optimization (key = 'logbook'), the last population
            of individuals (key = 'deap_pop') and the best fitness (key =
            'best_fitness').
    """

    ### get attributes
    max_evals = self.max_evals if max_evals is None else max_evals
    verbose = self.verbose if verbose is None else verbose
    plot_file = self.plot_file if plot_file is None else plot_file
    deap_dict = self.deap_dict

    ### run the search algorithm with the prepared deap_dict
    pop, logbook = self._deap_ea_generate_update(
        deap_dict,
        ngen=max_evals,
        verbose=verbose,
    )

    ### scale parameters of hall of fame back into original range [lower,upper]
    hof_final = deap_dict["inv_scaler"](deap_dict["hof"][0])
    best_fitness = deap_dict["hof"][0].fitness.values[0]

    ### get best parameters, last population of inidividuals and logbook
    best = {}
    for param_idx in range(len(deap_dict["lower"])):
        if deap_dict["param_names"] is not None:
            param_key = deap_dict["param_names"][param_idx]
        else:
            param_key = f"param{param_idx}"
        best[param_key] = hof_final[param_idx]
    best["logbook"] = logbook
    best["deap_pop"] = pop
    best["best_fitness"] = best_fitness

    ### skip plotting if plot_file is None
    if plot_file is None:
        return best

    ### plot logbook with logaritmic y-axis
    fig, ax = plt.subplots(figsize=(10, 5))
    ax.set_yscale("log")
    ax.plot(logbook.select("gen"), logbook.select("min"), label="min")
    ax.plot(logbook.select("gen"), logbook.select("avg"), label="avg")
    ax.plot(logbook.select("gen"), logbook.select("max"), label="max")
    ax.legend()
    ax.set_xlabel("Generation")
    ax.set_ylabel("Loss")
    fig.tight_layout()
    sf.create_dir("/".join(plot_file.split("/")[:-1]))
    fig.savefig(plot_file, dpi=300)
    plt.close(fig)

    return best

VClampParamSearch #

Class to obtain the parameters of some neuron model equations (describing the change of the membrane potential v) by simulating voltage steps with a given neuron_model. An voltage clamp version of the equations is used to calculate instantaneous and holding "currents" for specific voltage steps. The parameters are then optimized to fit the calculated "currents" to the measured currents from the simulated neuron model.

Attributes:

Name Type Description
p_opt dict

The optimized parameters

Source code in CompNeuroPy/extra_functions.py
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
class VClampParamSearch:
    """
    Class to obtain the parameters of some neuron model equations (describing the change
    of the membrane potential v) by simulating voltage steps with a given neuron_model.
    An voltage clamp version of the equations is used to calculate instantaneous and
    holding "currents" for specific voltage steps. The parameters are then optimized
    to fit the calculated "currents" to the measured currents from the simulated neuron
    model.

    Attributes:
        p_opt (dict):
            The optimized parameters
    """

    @check_types()
    def __init__(
        self,
        neuron_model: ann.Neuron,
        equations: str = """
        C*dv/dt = k*(v - v_r)*(v - v_t) - u + I
        du/dt = a*(b*(v - v_r) - u)
        """,
        external_current_var: str = "I",
        bounds: dict[str, tuple[float, float]] = {
            "C": (0.1, 100),
            "v_r": (-90, -40),
            "v_t": (-90, -40),
            "k": (0.01, 1),
            "a": (0.01, 1),
            "b": (-5, 5),
        },
        p0: None | dict[str, float | list] = None,
        max_evals: int = 100,
        m: int = 20,
        n: int = 20,
        do_plot: bool = False,
        results_file: str = "v_clamp_search_results",
        plot_file: str = "v_clamp_search_plot.png",
        cma_params_dict: dict = {"learn_rate_factor": 1, "damping_factor": 1},
        compile_folder_name: str = "VClampParamSearch",
        verbose: bool = False,
    ):
        """
        Args:
            neuron_model (Neuron):
                The neuron model which is simulated to obtain the parameters for the
                equations
            equations (str, optional):
                The equations whose parameters should be obtained. Default: Izhikevich
                2007 neuron model
            external_current_var (str, optional):
                The name of the variable in the neuron model which is used as the
                external current. Has to be used in the neuron model and the given
                equations Default: "I"
            bounds (dict, optional):
                The bounds for the parameters. For each parameter of the equation a
                bound should be given (except for the external current variable)!
                Default: Izhikevich 2007 neuron model
            p0 (dict, optional):
                The initial guess for the parameters. Dict keys should be the same as
                the keys of bounds. The values can be either a single number for each
                parameter or a list of numbers. If lists are given, all have to have
                the same length, which will be the number of initial guesses for the
                parameters, i.e. how often the optimization is run. Default: None,
                i.e. the mid of the bounds is used as a single initial guess.
            max_evals (int, optional):
                The maximum number of evaluations for a single optimization run.
                Default: 100
            m (int, optional):
                The number of initial voltages for the voltage step simulations.
                Default: 20
            n (int, optional):
                The number of voltage steps for the voltage step simulations.
                Defaults: 20
            do_plot (bool, optional):
                If True, plots are created. Default: False
            results_file (str, optional):
                The name of the file where the results are stored, without file ending.
                Default: "v_clamp_search_results"
            plot_file (str, optional):
                The name of the file where the plot is stored, with file ending.
                Default: "v_clamp_search_plot.png"
            cma_params_dict (dict, optional):
                Parameters for the deap cma strategy (deap.cma.Strategy). See [here](https://deap.readthedocs.io/en/master/api/algo.html#deap.cma.Strategy)
                for more details. Additional parameters are learn_rate_factor and
                damping_factor. Default: {"learn_rate_factor": 1, "damping_factor": 1}
            compile_folder_name (str, optional):
                The name of the folder within "annarchy_folders" where the ANNarchy
                network is compiled to. Default: "VClampParamSearch"
            verbose (bool, optional):
                If True, print details. Default: False
        """
        self.verbose = verbose
        self._verbose_extreme = False
        ### store the given neuron model and a voltage clamp version of it
        self.neuron_model = neuron_model
        self.external_current_var = external_current_var
        self._neuron_model = deepcopy(neuron_model)
        self._neuron_model_clamp = self._get_neuron_model_clamp()

        ### store other attributes
        self.m = m
        self.n = n
        self.equations = equations
        self.p0 = p0
        ### check if p0 is correct and if lists are given, create also lists single
        ### numbers which are given
        self._p0 = self._get_p0()
        self.max_evals = max_evals
        self.bounds = bounds
        self.do_plot = do_plot
        self.results_file = results_file
        self.plot_file = plot_file
        self.cma_params_dict = cma_params_dict
        ### check if file names are correct
        if "." in self.results_file or "." not in self.plot_file:
            raise ValueError(
                "results_file should not contain file ending and plot_file should!"
            )
        self.compile_folder_name = compile_folder_name
        self._timestep = 0.001

        ### create folder for plots
        if self.do_plot:
            sf.create_dir("/".join(plot_file.split("/")[:-1]))

        ### create the functions for I_clamp_inst and I_clamp_hold using the given
        ### izhikevich equations
        self._f_inst, self._f_hold, self._f_variables = self._create_I_clamp_functions()

        ### create the voltage step arrays
        self._v_0_arr, self._v_step_arr = self._create_voltage_step_arrays()

        ### for each neuron model create a population
        if self.verbose:
            print("Creating models...")
        mf.cnp_clear()
        self._model_normal, self._model_clamp = self._create_model()

        ### perform resting state and voltage step simulations to obtain I_clamp_inst,
        ### I_clamp_hold and v_rest
        self._I_clamp_inst_arr = None
        self._I_clamp_hold_arr = None
        if self.verbose:
            print("Performing simulations...")
        (
            self._v_rest,
            self._I_clamp_inst_arr,
            self._I_clamp_hold_arr,
            self._v_step_unique,
            self._I_clamp_hold_unique,
        ) = self._simulations()

        ### tune the free paramters of the functions for I_clamp_inst and I_clamp_hold
        ### to fit the data
        if self.verbose:
            print("Tuning parameters...")
        self._p_opt = self._tune_I_clamp_functions()
        self.p_opt = {
            param_name: self._p_opt.get(param_name, None)
            for param_name in self.bounds.keys()
        }
        self.p_opt["best_fitness"] = self._p_opt["best_fitness"]

        ### print and save optimized parameters
        if self.verbose:
            print(f"Optimized parameters: {self.p_opt}")
        ### save as pkl file
        sf.save_variables(
            [self.p_opt],
            [results_file.split("/")[-1]],
            "/".join(results_file.split("/")[:-1]) if "/" in results_file else "./",
        )
        ### save human readable as json file
        json.dump(
            self.p_opt,
            open(
                f"{results_file}.json",
                "w",
            ),
            indent=4,
        )

        ### create a neuron model with the tuned parameters and the given equations
        ### then run the simulations again with this neuron model to do the plots
        ### with the tuned parameters
        if self.verbose:
            print("Running simulations with tuned parameters...")
        mf.cnp_clear()
        self._neuron_model = self._create_neuron_model_with_tuned_parameters()
        self._neuron_model_clamp = self._get_neuron_model_clamp()
        self._model_normal, self._model_clamp = self._create_model()
        self._simulations()

    def _get_p0(self):
        """
        Check if p0 is correct and if lists are given, create also lists single numbers
        which are given.

        Returns:
            _p0 (dict):
                The corrected p0
        """
        _p0 = None
        if self.p0 is not None:
            ### collect lengths of lists
            list_lengths = []
            for key, val in self.p0.items():
                if isinstance(val, list):
                    list_lengths.append(len(val))
            ### check if all lists have the same length
            if len(set(list_lengths)) > 1:
                raise ValueError("All lists in p0 should have the same length!")
            ### create new p0 with lists for all parameters
            _p0 = deepcopy(self.p0)
            for key, val in _p0.items():
                if not isinstance(val, list):
                    _p0[key] = [val] * list_lengths[0] if list_lengths else [val]
        return _p0

    def _create_neuron_model_with_tuned_parameters(self):
        """
        Create a neuron model with the tuned parameters and the given equations.

        Returns:
            neuron_mondel (Neuron):
                the neuron model with the tuned parameters and the given equations
        """
        ### create the neuron with the tuned parameters, if a parameter is not tuned
        ### use the mid of the bounds (these parameters should not affect I_clamp_inst
        ### and I_clamp_hold)
        parameters = "\n".join(
            [
                f"{key} = {self._p_opt.get(key,sum(self.bounds[key])/2)}"
                for key in self.bounds.keys()
            ]
        )
        ### also add the external current variable
        parameters = parameters + "\n" + f"{self.external_current_var} = 0"
        neuron_mondel = ann.Neuron(
            parameters=parameters,
            equations=self.equations + "\nr=0",
        )
        if self.verbose:
            print(f"Neuron model with tuned parameters:\n{neuron_mondel}")

        return neuron_mondel

    def _tune_I_clamp_functions(self):
        """
        Tune the free paramters of the functions for I_clamp_inst and I_clamp_hold
        to fit the data.
        """
        ### get the names of the free parameters which will be tuned
        sub_var_names_list = []
        for var in self._f_variables:
            if str(var) not in self.bounds or str(var) == "v_r":
                continue
            sub_var_names_list.append(str(var))

        ### target array for the error function below
        target_arr = np.concatenate([self._I_clamp_inst_arr, self._I_clamp_hold_unique])

        ### create a function for the error
        def error_function(x):
            if self._verbose_extreme:
                print(f"Current guess: {x}")
            ### set the free parameters of the functions
            p_dict = {
                var_name: x[var_idx]
                for var_idx, var_name in enumerate(sub_var_names_list)
            }
            if self._verbose_extreme:
                print(f"Current guess dict: {p_dict}")
            var_dict = {str(var): p_dict.get(str(var)) for var in self._f_variables}
            var_dict["v_r"] = self._v_rest
            if self._verbose_extreme:
                print(f"var_dict: {var_dict}")
                print(f"f_variables: {self._f_variables}")

            ### calculate the voltage clamp values
            ### 1st f_inst, it depends on v_0 and v_step
            var_dict["v_0"] = self._v_0_arr
            var_dict["v_step"] = self._v_step_arr
            f_inst_arr = self._f_inst(*list(var_dict.values()))
            ### 2nd f_hold, it depends only on v_step
            var_dict["v_0"] = self._v_0_arr[int(len(self._v_0_arr) / 2)]
            var_dict["v_step"] = self._v_step_unique
            f_hold_arr = self._f_hold(*list(var_dict.values()))

            ### calculate the error
            error = af.rmse(target_arr, np.concatenate([f_inst_arr, f_hold_arr]))
            return error

        def error_function_deap(population):
            error_list = [(error_function(individual),) for individual in population]
            return error_list

        ### perform the optimization
        ### set bounds
        bounds = np.array([self.bounds[var_name] for var_name in sub_var_names_list])
        ### set initial guess
        if isinstance(self._p0, type(None)):
            ### if no initial guess is given use the middle of the bounds
            initial_guess = np.array(
                [sum(self.bounds[var_name]) / 2.0 for var_name in sub_var_names_list]
            )
        else:
            ### initial guess is an array 1st dimension is the number of tuned parameters
            ### 2nd dimension is the number of initial guesses
            initial_guess = np.array(
                [self._p0[var_name] for var_name in sub_var_names_list]
            )
        if self.verbose:
            print(f"p0: {self.p0}")
            print(f"_p0: {self._p0}")
            print(f"bounds: {self.bounds}")
            print(f"Initial guess: {initial_guess}")
            print(f"Bounds: {bounds}\n")

        ### run the optimization multiple times with different initial guesses
        print_results = []
        best_fitness = np.inf
        for initial_guess_idx in range(initial_guess.shape[1]):
            deap_cma = DeapCma(
                max_evals=self.max_evals,
                lower=bounds[:, 0],
                upper=bounds[:, 1],
                evaluate_function=error_function_deap,
                p0=initial_guess[:, initial_guess_idx],
                param_names=sub_var_names_list,
                learn_rate_factor=self.cma_params_dict["learn_rate_factor"],
                damping_factor=self.cma_params_dict["damping_factor"],
                verbose=False,
                plot_file=self.plot_file.split(".")[0]
                + f"_logbook_{initial_guess_idx}."
                + self.plot_file.split(".")[-1],
                cma_params_dict=self.cma_params_dict,
            )
            result = deap_cma.run()
            print_results_dict = {
                var_name: result[var_name] for var_name in sub_var_names_list
            }
            print_results_dict["best_fitness"] = result["best_fitness"]
            print_results.append(print_results_dict)
            if result["best_fitness"] < best_fitness:
                best_fitness = result["best_fitness"]
                best_result = result
        result_dict = {
            var_name: best_result[var_name] for var_name in sub_var_names_list
        }
        result_dict["best_fitness"] = best_result["best_fitness"]
        result_dict["v_r"] = self._v_rest

        if self.verbose:
            print("Results:")
            print_df(pd.DataFrame(print_results))
            print(f"Result: {result_dict}")

        return result_dict

    def _create_I_clamp_functions(self):
        """
        Create the functions for I_clamp_inst and I_clamp_hold using the given
        izhikevich equations.

        Returns:
            f_inst (Callable):
                Function for I_clamp_inst
            f_hold (Callable):
                Function for I_clamp_hold
            variables (list):
                List of variables used for the functions
        """
        ### obtain all variables and parameters from the equation string
        variables_name_list = self._get_variables_from_eq(self.equations)

        ### split equations into lines, remove whitespace and only keep entries with
        ### length > 0
        eq_line_list = self.equations.splitlines()
        eq_line_list = [line.replace(" ", "") for line in eq_line_list]
        eq_line_list = [line for line in eq_line_list if len(line) > 0]

        ### create a dictionary with the variables as keys and the sympy symbols as
        ### values
        variables_sympy_dict = {key: Symbol(key) for key in variables_name_list}

        ### also create sympy symbols for v_0 and v_step
        variables_sympy_dict["v_0"] = Symbol("v_0")
        variables_sympy_dict["v_step"] = Symbol("v_step")

        ### sympify equations
        eq_sympy_list = []
        variables_to_solve_for_list = []
        instant_update_list = []
        for line_idx, line in enumerate(eq_line_list):
            left_side = line.split("=")[0]
            right_side = line.split("=")[1]
            ### check if line contains dv/dt, replace it with 0 and add external current
            ### variable to variables_to_solve_for_list, also set instant_update to True
            if "dv/dt" in line:
                variables_to_solve_for_list.append(self.external_current_var)
                left_side = left_side.replace("dv/dt", "0")
                instant_update_list.append(True)
            ### check if line contains any other derivative with syntax "d<var>/dt"
            ### using re, replace it with 0 and add the variable to
            ### variables_to_solve_for_list, also set instant_update to False
            elif re.search(r"d\w+/dt", line):
                variables_to_solve_for_list.append(
                    re.search(r"d(\w+)/dt", line).group(1)
                )
                left_side = left_side.replace(
                    re.search(r"d(\w+)/dt", line).group(0), "0"
                )
                instant_update_list.append(False)
            ### else it is a "normal" equation (<var> = <expression>), not changing
            ### anything, add the variable to variables_to_solve_for_list and set
            ### instant_update to True
            else:
                variables_to_solve_for_list.append(line.split("=")[0])
                instant_update_list.append(True)
            ### create the sympy equation, move everything on one side (other side = 0)
            eq_sympy_list.append(Eq(0, sympify(right_side) - sympify(left_side)))

        ### 1st find solution of variables for holding v_0
        eq_sympy_list_hold_v_0 = deepcopy(eq_sympy_list)
        for line_idx, line in enumerate(eq_sympy_list_hold_v_0):
            eq_sympy_list_hold_v_0[line_idx] = line.subs(
                {variables_sympy_dict["v"]: variables_sympy_dict["v_0"]}
            )
        ### solve
        solution_hold_v_0 = self._solve_v_clamp_equations(
            eq_sympy_list_hold_v_0, variables_to_solve_for_list, "holding v_0"
        )

        ### 2nd for I_clamp_inst set v to v_step only in equations which are
        ### updated instantaneously  (I_clamp and all non-derivatives), for all
        ### derivatives use the solution for holding v_0
        eq_sympy_list_inst = deepcopy(eq_sympy_list)
        for line_idx, line in enumerate(eq_sympy_list_inst):
            if instant_update_list[line_idx]:
                ### variable is updated instantaneously -> set v to v_step
                eq_sympy_list_inst[line_idx] = line.subs(
                    {
                        variables_sympy_dict["v"]: variables_sympy_dict["v_step"],
                    }
                )
            else:
                ### variable is not updated instantaneously -> use solution for hold v_0
                current_variable_name = variables_to_solve_for_list[line_idx]
                current_variable = variables_sympy_dict[current_variable_name]
                eq_sympy_list_inst[line_idx] = Eq(
                    0, solution_hold_v_0[current_variable] - current_variable
                )
        ### solve
        solution_inst = self._solve_v_clamp_equations(
            eq_sympy_list_inst, variables_to_solve_for_list, "step from v_0 to v_step"
        )

        ### 3rd for I_clamp_hold (i.e. holding v_step) set v to v_step in all
        ### equations
        eq_sympy_list_hold = deepcopy(eq_sympy_list)
        for line_idx, line in enumerate(eq_sympy_list_hold):
            eq_sympy_list_hold[line_idx] = line.subs(
                {variables_sympy_dict["v"]: variables_sympy_dict["v_step"]}
            )
        ### solve
        solution_hold = self._solve_v_clamp_equations(
            eq_sympy_list_hold, variables_to_solve_for_list, "holding v_step"
        )

        ### get the equations for I_clamp_inst and I_clamp_hold (i.e. the external
        ### current variable)
        eq_I_clamp_inst = solution_inst[variables_sympy_dict[self.external_current_var]]
        eq_I_clamp_hold = solution_hold[variables_sympy_dict[self.external_current_var]]
        if self.verbose:
            print(f"Equation for I_clamp_inst: {factor(eq_I_clamp_inst)}")
            print(f"Equation for I_clamp_hold: {factor(eq_I_clamp_hold)}")

        ### create functions for I_clamp_inst and I_clamp_hold
        ### 1st obtain all variables from the equations for I_clamp_inst and I_clamp_hold
        f_variables = list(
            set(list(eq_I_clamp_inst.free_symbols) + list(eq_I_clamp_hold.free_symbols))
        )
        ### 2nd create a function for each equation
        f_inst = lambdify(f_variables, eq_I_clamp_inst)
        f_hold = lambdify(f_variables, eq_I_clamp_hold)

        return f_inst, f_hold, f_variables

    def _solve_v_clamp_equations(
        self, eq_sympy_list, variables_to_solve_for_list, name
    ):
        solution = solve(
            eq_sympy_list,
            variables_to_solve_for_list,
            dict=True,
        )
        if len(solution) == 1:
            solution = solution[0]
        elif len(solution) > 1:
            print(f"Warning: Multiple solutions for {name}!")
        else:
            raise ValueError(f"Could not solve equations for {name}!")

        return solution

    def _get_variables_from_eq(self, eq: str):
        """
        Get a list of all variable names from the given equation string.

        Args:
            eq (str):
                the equation string
        """
        ### split equations into lines
        eq_line_list = eq.splitlines()

        ### loop over lines
        variables_name_list = []
        for line in eq_line_list:
            if "=" not in line:
                continue
            ### split line at = and only take right side (e.g. not use dv/dt)
            line = line.split("=")[1]
            ### remove whitespaces
            line = line.replace(" ", "")
            ### replace all kind of special characters with a space
            special_characters = ["+", "-", "*", "/", "(", ")", "[", "]", "="]
            for special_character in special_characters:
                line = line.replace(special_character, " ")
            ### split line at spaces
            line_split = line.split()
            ### append to list
            variables_name_list += line_split

        ### remove duplicates
        variables_name_list = list(set(variables_name_list))

        return variables_name_list

    def _simulations(self):
        """
        Perform the resting state and voltage step simulations to obtain I_clamp_inst,
        I_clamp_hold and v_rest.

        Returns:
            v_rest (float):
                resting state voltage
            I_clamp_inst (np.array):
                array of the voltage clamp values directly after the voltage step
            I_clamp_hold (np.array):
                array of the voltage clamp values after the holding period

        """
        duration = 200
        ### simulate both models at the same time
        ### for pop_normal nothing happens (resting state)
        ### for pop_clamp the voltage is set to v_0 and then to v_step for each neuron
        ann.get_population("pop_clamp").v = self._v_0_arr
        ann.simulate(duration)
        ann.get_population("pop_clamp").v = self._v_step_arr
        ann.simulate(self._timestep)
        I_clamp_inst_arr = ann.get_population("pop_clamp").I_clamp
        ann.simulate(duration - self._timestep)
        I_clamp_hold_arr = ann.get_population("pop_clamp").I_clamp
        v_rest = ann.get_population("pop_normal").v[0]

        ### get unique values of v_step and their indices
        v_step_unique, v_step_unique_idx = np.unique(
            self._v_step_arr, return_index=True
        )
        ### get the corresponding values of I_clamp_hold (because it does only depend on
        ### v_step)
        I_clamp_hold_unique = I_clamp_hold_arr[v_step_unique_idx]

        if self.do_plot and not isinstance(self._I_clamp_inst_arr, type(None)):
            plt.close("all")
            plt.figure(figsize=(6.4 * 3, 4.8 * 2))
            ### create a 2D color-coded plot of the data for I_clamp_inst and I_clamp_hold
            x = self._v_0_arr
            y = self._v_step_arr

            ### create 2 subplots for original I_clamp_inst and I_clamp_hold
            plt.subplot(231)
            self._plot_I_clamp_subplot(
                x,
                y,
                self._I_clamp_inst_arr,
                "I_clamp_inst original",
            )
            plt.subplot(234)
            self._plot_I_clamp_subplot(
                x,
                y,
                self._I_clamp_hold_arr,
                "I_clamp_hold original",
            )

            ### create 2 subplots for tuned I_clamp_inst and I_clamp_hold
            plt.subplot(232)
            self._plot_I_clamp_subplot(
                x,
                y,
                I_clamp_inst_arr,
                "I_clamp_inst tuned",
            )
            plt.subplot(235)
            self._plot_I_clamp_subplot(
                x,
                y,
                I_clamp_hold_arr,
                "I_clamp_hold tuned",
            )

            ### create 2 subplots for differences
            plt.subplot(233)
            self._plot_I_clamp_subplot(
                x,
                y,
                self._I_clamp_inst_arr - I_clamp_inst_arr,
                "I_clamp_inst diff",
            )
            plt.subplot(236)
            self._plot_I_clamp_subplot(
                x,
                y,
                self._I_clamp_hold_arr - I_clamp_hold_arr,
                "I_clamp_hold diff",
            )

            plt.tight_layout()

            plt.savefig(
                self.plot_file.split(".")[0] + "_data." + self.plot_file.split(".")[1],
                dpi=300,
            )
            plt.close("all")

        return (
            v_rest,
            I_clamp_inst_arr,
            I_clamp_hold_arr,
            v_step_unique,
            I_clamp_hold_unique,
        )

    def _plot_I_clamp_subplot(self, x, y, c, label):
        plt.title(label)

        ci = c
        if len(c) >= 4:
            # Define the grid for interpolation
            xi, yi = np.meshgrid(
                np.linspace(min(x), max(x), 100), np.linspace(min(y), max(y), 100)
            )

            # Perform the interpolation
            ci = griddata((x, y), c, (xi, yi), method="linear")

            # Plot the interpolated surface
            plt.contourf(
                xi,
                yi,
                ci,
                levels=100,
                cmap="bwr",
                vmin=-af.get_maximum(np.absolute(ci)),
                vmax=af.get_maximum(np.absolute(ci)),
            )

        # Plot also the original data points
        plt.scatter(
            x,
            y,
            c=c,
            cmap="bwr",
            vmin=-af.get_maximum(np.absolute(ci)),
            vmax=af.get_maximum(np.absolute(ci)),
            s=5,
        )

        plt.colorbar(label=label)
        plt.xlabel("v_0")
        plt.ylabel("v_step")

    def _create_voltage_step_arrays(self):
        """
        Create the arrays for the initial voltages and the voltage steps.

        Returns:
            v_0_arr (np.array):
                array of the initial voltages
            v_step_arr (np.array):
                array of the voltage steps

        """
        ### create the unique values of v_step and v_0
        v_0_arr_unique = np.linspace(-90, -40, self.m)
        v_step_arr_unique = np.linspace(-90, -40, self.n)

        ### create a 2D array of all combinations of v_0 and v_step
        v_0_arr = np.repeat(v_0_arr_unique, self.n)
        v_step_arr = np.tile(v_step_arr_unique, self.m)

        return v_0_arr, v_step_arr

    def _create_model(self):
        """
        Create a population (single neuron) for each neuron model.

        Returns:
            model_normal (CompNeuroModel):
                model containing the population with the normal neuron model
            model_clamp (CompNeuroModel):
                model containing the population with the voltage clamped neuron model
        """
        ### setup ANNarchy
        ann.setup(dt=self._timestep, seed=1234)
        ### create a population with the normal neuron model
        model_normal = CompNeuroModel(
            model_creation_function=lambda: ann.Population(
                1, self._neuron_model, name="pop_normal"
            ),
            name="model_normal",
            do_compile=False,
        )
        ### create a population with the voltage clamped neuron model
        model_clamp = CompNeuroModel(
            model_creation_function=lambda: ann.Population(
                len(self._v_0_arr), self._neuron_model_clamp, name="pop_clamp"
            ),
            name="model_clamp",
            compile_folder_name=self.compile_folder_name,
        )

        return model_normal, model_clamp

    def _get_neuron_model_attributes(self, neuron_model: ann.Neuron):
        """
        Get a list of the attributes (parameters and variables) of the given neuron
        model.

        Returns:
            attributes (list):
                list of the attributes of the given neuron model
        """
        neuron_model._analyse()
        attributes = []
        for param in neuron_model.description["parameters"]:
            attributes.append(param["name"])
        for var in neuron_model.description["variables"]:
            attributes.append(var["name"])
        return attributes

    def _get_neuron_model_arguments(self, neuron_model: ann.Neuron):
        """
        Get a dictionary of the initial arguments of the given neuron model.

        Args:
            neuron_model (Neuron):
                the neuron model which should be analyzed

        Returns:
            init_arguments_dict (dict):
                dictionary of the initial arguments of the given neuron model
        """
        ### get the names of the arguments of a Neuron class
        init_arguments_name_list = list(ann.Neuron.__init__.__code__.co_varnames)
        init_arguments_name_list.remove("self")
        init_arguments_name_list.remove("name")
        init_arguments_name_list.remove("description")
        ### get these attributes from the given neuron model
        init_arguments_dict = {
            init_arguments_name: getattr(neuron_model, init_arguments_name)
            for init_arguments_name in init_arguments_name_list
        }

        return init_arguments_dict

    def _get_neuron_model_clamp(self):
        """
        Create a neuron model with voltage clamp equations.

        Returns:
            neuron_model_clamp (Neuron):
                the neuron model with voltage clamped equation
        """
        ### get these attributes from the given neuron model
        init_arguments_dict = self._get_neuron_model_arguments(self._neuron_model)
        ### split the equations string
        equations_line_split_list = str(init_arguments_dict["equations"]).splitlines()
        ### adjust the equations for voltage clamp
        equations_line_split_list = self._adjust_equations_for_voltage_clamp(
            equations_line_split_list
        )

        ### combine string lines to multiline strings again
        init_arguments_dict["equations"] = "\n".join(equations_line_split_list)

        ### create neuron model with new equations
        neuron_model_clamp = ann.Neuron(**init_arguments_dict)

        if self.verbose:
            print(f"Neuron model with voltage clamp equations:\n{neuron_model_clamp}")

        return neuron_model_clamp

    def _adjust_equations_for_voltage_clamp(self, eq_line_list: list):
        """
        Replaces the 'dv/dt' equation with a voltage clamp version (dv/dt=0) in which the
        new variable 'I_clamp' is obtained by solving the 'dv/dt' equation for its
        external current variable.

        Args:
            eq_line_list (list):
                list of the lines of the equations of the neuron model

        Returns:
            eq_line_list (list):
                list of the lines of the equations of the neuron model with voltage clamp
        """
        ### check in which lines v is updated
        line_is_v_list = [False] * len(eq_line_list)
        for line_idx, line in enumerate(eq_line_list):
            line_is_v_list[line_idx] = self._get_line_is_v(line)
        ### raise error if in no line v is updated or in multiple lines
        if sum(line_is_v_list) == 0 or sum(line_is_v_list) > 1:
            raise ValueError(
                "Could not find one line with dv/dt or v+= in equations of neuronmodel!"
            )

        ### obtain the line containing v update
        eq_v = eq_line_list[line_is_v_list.index(True)]

        ### remove whitespaces
        eq_v = eq_v.replace(" ", "")

        ### split eqatuion at ":" to ignore flags
        eq_v_split = eq_v.split(":")
        eq_v = eq_v_split[0]
        ### adjust the equation for voltage clamp
        eq_v, eq_I_clamp = self._adjust_equation_for_voltage_clamp_dvdt(eq_v)
        ### delete old equation from equation list using the index of the equation
        eq_line_list.pop(line_is_v_list.index(True))
        ### insert new equation at the same position
        eq_line_list.insert(line_is_v_list.index(True), eq_v)
        ### insert new equation for "I_clamp" at the same position
        eq_line_list.insert(line_is_v_list.index(True), eq_I_clamp)

        return eq_line_list

    def _adjust_equation_for_voltage_clamp_dvdt(self, eq_v: str):
        """
        Convert the v-update equation using "dv/dt" into a voltage clamp version.

        !!! warning
            Equation needs to contain dv/dt and the external current variable.

        Args:
            eq_v (str):
                the equation string for updating v (without flags and whitespace)

        Returns:
            eq_v (str):
                the adjusted equation string for updating v (without flags)
            eq_I_clamp (str):
                the equation string for "I_clamp"
        """

        ### if equation doesn't start with "dv/dt=" --> need to rearrange equation
        ### set dv/dt to zero and solve the equation for the external current variable
        ### (will be I_clamp)
        eq_v = eq_v.replace("dv/dt", "0")

        ### split the equation at "=" and move everything on one side (other side = 0)
        left_side, right_side = eq_v.split("=")
        eq_v_one_side = f"{right_side} - {left_side}"

        ### prepare the sympy equation generation
        attributes_name_list = self._get_neuron_model_attributes(self._neuron_model)
        ### create a sympy symbol for each attribute of the neuron
        attributes_tuple = symbols(",".join(attributes_name_list))
        ### create a dict with the names as keys and the sympy symbols as values
        attributes_sympy_dict = {
            key: attributes_tuple[attributes_name_list.index(key)]
            for key in attributes_name_list
        }

        ### now creating the sympy equation
        eq_sympy = sympify(eq_v_one_side)

        ### solve the equation for the external current variable
        if self.verbose:
            print(f"attributes_sympy_dict: {attributes_sympy_dict}")
        result = solve(
            eq_sympy, attributes_sympy_dict[self.external_current_var], dict=True
        )
        if len(result) != 1:
            raise ValueError(
                f"Could not solve equation of neuronmodel for external current variable {self.external_current_var}!"
            )

        ### convert result to string
        result = str(result[0][attributes_sympy_dict[self.external_current_var]])

        ### create new equation for dv/dt
        eq_v = "dv/dt = 0"
        ### create new equation for "I_clamp" with the equation solved for the external
        ### current variable
        eq_I_clamp = "I_clamp=" + result

        return eq_v, eq_I_clamp

    def _get_line_is_v(self, line: str):
        """
        Check if a equation string contains dv/dt or v+=

        Args:
            line (str):
                the equation string

        Returns:
            line_is_v (bool):
                True if the equation string contains dv/dt or v+=, False otherwise
        """
        if "v" not in line:
            return False

        ### remove whitespaces
        line = line.replace(" ", "")

        ### check for dv/dt
        if "dv/dt" in line:
            return True

        ### check for v update
        if "v+=" in line and line.startswith("v"):
            return True

        return False

__init__(neuron_model, equations='\n C*dv/dt = k*(v - v_r)*(v - v_t) - u + I\n du/dt = a*(b*(v - v_r) - u)\n ', external_current_var='I', bounds={'C': (0.1, 100), 'v_r': (-90, -40), 'v_t': (-90, -40), 'k': (0.01, 1), 'a': (0.01, 1), 'b': (-5, 5)}, p0=None, max_evals=100, m=20, n=20, do_plot=False, results_file='v_clamp_search_results', plot_file='v_clamp_search_plot.png', cma_params_dict={'learn_rate_factor': 1, 'damping_factor': 1}, compile_folder_name='VClampParamSearch', verbose=False) #

Parameters:

Name Type Description Default
neuron_model Neuron

The neuron model which is simulated to obtain the parameters for the equations

required
equations str

The equations whose parameters should be obtained. Default: Izhikevich 2007 neuron model

'\n C*dv/dt = k*(v - v_r)*(v - v_t) - u + I\n du/dt = a*(b*(v - v_r) - u)\n '
external_current_var str

The name of the variable in the neuron model which is used as the external current. Has to be used in the neuron model and the given equations Default: "I"

'I'
bounds dict

The bounds for the parameters. For each parameter of the equation a bound should be given (except for the external current variable)! Default: Izhikevich 2007 neuron model

{'C': (0.1, 100), 'v_r': (-90, -40), 'v_t': (-90, -40), 'k': (0.01, 1), 'a': (0.01, 1), 'b': (-5, 5)}
p0 dict

The initial guess for the parameters. Dict keys should be the same as the keys of bounds. The values can be either a single number for each parameter or a list of numbers. If lists are given, all have to have the same length, which will be the number of initial guesses for the parameters, i.e. how often the optimization is run. Default: None, i.e. the mid of the bounds is used as a single initial guess.

None
max_evals int

The maximum number of evaluations for a single optimization run. Default: 100

100
m int

The number of initial voltages for the voltage step simulations. Default: 20

20
n int

The number of voltage steps for the voltage step simulations. Defaults: 20

20
do_plot bool

If True, plots are created. Default: False

False
results_file str

The name of the file where the results are stored, without file ending. Default: "v_clamp_search_results"

'v_clamp_search_results'
plot_file str

The name of the file where the plot is stored, with file ending. Default: "v_clamp_search_plot.png"

'v_clamp_search_plot.png'
cma_params_dict dict

Parameters for the deap cma strategy (deap.cma.Strategy). See here for more details. Additional parameters are learn_rate_factor and damping_factor. Default: {"learn_rate_factor": 1, "damping_factor": 1}

{'learn_rate_factor': 1, 'damping_factor': 1}
compile_folder_name str

The name of the folder within "annarchy_folders" where the ANNarchy network is compiled to. Default: "VClampParamSearch"

'VClampParamSearch'
verbose bool

If True, print details. Default: False

False
Source code in CompNeuroPy/extra_functions.py
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
@check_types()
def __init__(
    self,
    neuron_model: ann.Neuron,
    equations: str = """
    C*dv/dt = k*(v - v_r)*(v - v_t) - u + I
    du/dt = a*(b*(v - v_r) - u)
    """,
    external_current_var: str = "I",
    bounds: dict[str, tuple[float, float]] = {
        "C": (0.1, 100),
        "v_r": (-90, -40),
        "v_t": (-90, -40),
        "k": (0.01, 1),
        "a": (0.01, 1),
        "b": (-5, 5),
    },
    p0: None | dict[str, float | list] = None,
    max_evals: int = 100,
    m: int = 20,
    n: int = 20,
    do_plot: bool = False,
    results_file: str = "v_clamp_search_results",
    plot_file: str = "v_clamp_search_plot.png",
    cma_params_dict: dict = {"learn_rate_factor": 1, "damping_factor": 1},
    compile_folder_name: str = "VClampParamSearch",
    verbose: bool = False,
):
    """
    Args:
        neuron_model (Neuron):
            The neuron model which is simulated to obtain the parameters for the
            equations
        equations (str, optional):
            The equations whose parameters should be obtained. Default: Izhikevich
            2007 neuron model
        external_current_var (str, optional):
            The name of the variable in the neuron model which is used as the
            external current. Has to be used in the neuron model and the given
            equations Default: "I"
        bounds (dict, optional):
            The bounds for the parameters. For each parameter of the equation a
            bound should be given (except for the external current variable)!
            Default: Izhikevich 2007 neuron model
        p0 (dict, optional):
            The initial guess for the parameters. Dict keys should be the same as
            the keys of bounds. The values can be either a single number for each
            parameter or a list of numbers. If lists are given, all have to have
            the same length, which will be the number of initial guesses for the
            parameters, i.e. how often the optimization is run. Default: None,
            i.e. the mid of the bounds is used as a single initial guess.
        max_evals (int, optional):
            The maximum number of evaluations for a single optimization run.
            Default: 100
        m (int, optional):
            The number of initial voltages for the voltage step simulations.
            Default: 20
        n (int, optional):
            The number of voltage steps for the voltage step simulations.
            Defaults: 20
        do_plot (bool, optional):
            If True, plots are created. Default: False
        results_file (str, optional):
            The name of the file where the results are stored, without file ending.
            Default: "v_clamp_search_results"
        plot_file (str, optional):
            The name of the file where the plot is stored, with file ending.
            Default: "v_clamp_search_plot.png"
        cma_params_dict (dict, optional):
            Parameters for the deap cma strategy (deap.cma.Strategy). See [here](https://deap.readthedocs.io/en/master/api/algo.html#deap.cma.Strategy)
            for more details. Additional parameters are learn_rate_factor and
            damping_factor. Default: {"learn_rate_factor": 1, "damping_factor": 1}
        compile_folder_name (str, optional):
            The name of the folder within "annarchy_folders" where the ANNarchy
            network is compiled to. Default: "VClampParamSearch"
        verbose (bool, optional):
            If True, print details. Default: False
    """
    self.verbose = verbose
    self._verbose_extreme = False
    ### store the given neuron model and a voltage clamp version of it
    self.neuron_model = neuron_model
    self.external_current_var = external_current_var
    self._neuron_model = deepcopy(neuron_model)
    self._neuron_model_clamp = self._get_neuron_model_clamp()

    ### store other attributes
    self.m = m
    self.n = n
    self.equations = equations
    self.p0 = p0
    ### check if p0 is correct and if lists are given, create also lists single
    ### numbers which are given
    self._p0 = self._get_p0()
    self.max_evals = max_evals
    self.bounds = bounds
    self.do_plot = do_plot
    self.results_file = results_file
    self.plot_file = plot_file
    self.cma_params_dict = cma_params_dict
    ### check if file names are correct
    if "." in self.results_file or "." not in self.plot_file:
        raise ValueError(
            "results_file should not contain file ending and plot_file should!"
        )
    self.compile_folder_name = compile_folder_name
    self._timestep = 0.001

    ### create folder for plots
    if self.do_plot:
        sf.create_dir("/".join(plot_file.split("/")[:-1]))

    ### create the functions for I_clamp_inst and I_clamp_hold using the given
    ### izhikevich equations
    self._f_inst, self._f_hold, self._f_variables = self._create_I_clamp_functions()

    ### create the voltage step arrays
    self._v_0_arr, self._v_step_arr = self._create_voltage_step_arrays()

    ### for each neuron model create a population
    if self.verbose:
        print("Creating models...")
    mf.cnp_clear()
    self._model_normal, self._model_clamp = self._create_model()

    ### perform resting state and voltage step simulations to obtain I_clamp_inst,
    ### I_clamp_hold and v_rest
    self._I_clamp_inst_arr = None
    self._I_clamp_hold_arr = None
    if self.verbose:
        print("Performing simulations...")
    (
        self._v_rest,
        self._I_clamp_inst_arr,
        self._I_clamp_hold_arr,
        self._v_step_unique,
        self._I_clamp_hold_unique,
    ) = self._simulations()

    ### tune the free paramters of the functions for I_clamp_inst and I_clamp_hold
    ### to fit the data
    if self.verbose:
        print("Tuning parameters...")
    self._p_opt = self._tune_I_clamp_functions()
    self.p_opt = {
        param_name: self._p_opt.get(param_name, None)
        for param_name in self.bounds.keys()
    }
    self.p_opt["best_fitness"] = self._p_opt["best_fitness"]

    ### print and save optimized parameters
    if self.verbose:
        print(f"Optimized parameters: {self.p_opt}")
    ### save as pkl file
    sf.save_variables(
        [self.p_opt],
        [results_file.split("/")[-1]],
        "/".join(results_file.split("/")[:-1]) if "/" in results_file else "./",
    )
    ### save human readable as json file
    json.dump(
        self.p_opt,
        open(
            f"{results_file}.json",
            "w",
        ),
        indent=4,
    )

    ### create a neuron model with the tuned parameters and the given equations
    ### then run the simulations again with this neuron model to do the plots
    ### with the tuned parameters
    if self.verbose:
        print("Running simulations with tuned parameters...")
    mf.cnp_clear()
    self._neuron_model = self._create_neuron_model_with_tuned_parameters()
    self._neuron_model_clamp = self._get_neuron_model_clamp()
    self._model_normal, self._model_clamp = self._create_model()
    self._simulations()

InteractivePlot #

Source code in CompNeuroPy/extra_functions.py
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
class InteractivePlot:

    def __init__(
        self,
        nrows: int,
        ncols: int,
        sliders: list[dict],
        create_plot: Callable,
        update_loop: Callable | None = None,
        figure_frequency: float = 20.0,
        update_frequency: float = np.inf,
    ):
        """
        Create an interactive plot with sliders.

        Args:
            nrows (int):
                number of rows of subplots
            ncols (int):
                number of columns of subplots
            sliders (list):
                list of dictionaries with slider kwargs (see matplotlib.widgets.Slider), at
                least the following keys have to be present:
                    - label (str):
                        label of the slider
                    - valmin (float):
                        minimum value of the slider
                    - valmax (float):
                        maximum value of the slider
            create_plot (Callable):
                function which fills the subplots, has to have the signature
                create_plot(axs, sliders), where axs is a list of axes (for each subplot)
                and sliders is the given sliders list with newly added keys "ax" (axes of
                the slider) and "slider" (the Slider object itself, so that you can access
                the slider values in the create_plot function using the .val attribute)
            update_loop (Callable, optional):
                Function which is called periodically. After each call the plot is updated.
                If None, the plot is only updated when a slider is changed. Default is None.
            figure_frequency (float, optional):
                Frequency of the figure update in Hz. Default is 20.0.
            update_frequency (float, optional):
                Frequency of the update loop in Hz. Default is np.inf.

        Example:
            ```python
            def create_plot(axs, sliders):
                axs[0].axhline(sliders[0]["slider"].val, color="r")
                axs[1].axvline(sliders[1]["slider"].val, color="r")

            interactive_plot(
                nrows=2,
                ncols=1,
                sliders=[
                    {"label": "a", "valmin": 0.0, "valmax": 1.0, "valinit": 0.3},
                    {"label": "b", "valmin": 0.0, "valmax": 1.0, "valinit": 0.7},
                ],
                create_plot=create_plot,
            )
            ```
        """
        self.create_plot = create_plot
        self._waiter = _Waiter(duration=2.0, on_finish=self._recreate_plot)
        plt.close("all")

        ### create the figure as large as the screen
        screen_width, screen_height = get_monitors()[0].width, get_monitors()[0].height
        figsize = (screen_width / 100, screen_height / 100)
        fig, axs = plt.subplots(nrows, ncols, figsize=figsize)
        self.fig = fig
        self.axs = axs

        ### create the sliders figure, set the axes for the sliders
        fig_sliders, axs_sliders = plt.subplots(
            len(sliders), 1, figsize=(6.4, 4.8 * len(sliders))
        )
        if len(sliders) == 1:
            axs_sliders = [axs_sliders]
        for slider_idx in range(len(sliders)):
            sliders[slider_idx]["ax"] = axs_sliders[slider_idx]

        ### initialize the sliders
        for slider_idx, slider_kwargs in enumerate(sliders):
            ### if init out of min max, change min max
            if "valinit" in slider_kwargs:
                if slider_kwargs["valinit"] < slider_kwargs["valmin"]:
                    slider_kwargs["valmin"] = slider_kwargs["valinit"]
                elif slider_kwargs["valinit"] > slider_kwargs["valmax"]:
                    slider_kwargs["valmax"] = slider_kwargs["valinit"]
            slider = Slider(**slider_kwargs)
            slider.on_changed(lambda val: self._waiter.start())
            sliders[slider_idx]["slider"] = slider

        self.sliders = sliders

        ### create the plot
        create_plot(axs, sliders)

        if update_loop is None:
            ### show the plot
            self.ani = FuncAnimation(
                self.fig,
                func=lambda frame: 0,
                frames=10,
                interval=(1.0 / figure_frequency) * 1000,
                repeat=True,
            )
            self.fig.tight_layout()
            plt.show()
        else:
            ### run update loop until figure is closed
            figure_pause = 1 / figure_frequency
            max_updates_per_pause = update_frequency / figure_frequency
            while plt.fignum_exists(fig.number):
                ### update figure
                self._recreate_plot
                plt.pause(figure_pause)
                ### in between do the update loop multiple times
                start = time.time()
                nr_updates = 0
                while (
                    time.time() - start < figure_pause
                    and nr_updates < max_updates_per_pause
                ):
                    update_loop()
                    nr_updates += 1

    def _recreate_plot(self):
        ### pause the animation
        self.ani.event_source.stop()
        ### clear the axes
        for ax in self.axs.flatten():
            ax.cla()
        ### recreate the plot
        self.create_plot(self.axs, self.sliders)
        ### restart the animation
        self.ani.event_source.start()

__init__(nrows, ncols, sliders, create_plot, update_loop=None, figure_frequency=20.0, update_frequency=np.inf) #

Create an interactive plot with sliders.

Parameters:

Name Type Description Default
nrows int

number of rows of subplots

required
ncols int

number of columns of subplots

required
sliders list

list of dictionaries with slider kwargs (see matplotlib.widgets.Slider), at least the following keys have to be present: - label (str): label of the slider - valmin (float): minimum value of the slider - valmax (float): maximum value of the slider

required
create_plot Callable

function which fills the subplots, has to have the signature create_plot(axs, sliders), where axs is a list of axes (for each subplot) and sliders is the given sliders list with newly added keys "ax" (axes of the slider) and "slider" (the Slider object itself, so that you can access the slider values in the create_plot function using the .val attribute)

required
update_loop Callable

Function which is called periodically. After each call the plot is updated. If None, the plot is only updated when a slider is changed. Default is None.

None
figure_frequency float

Frequency of the figure update in Hz. Default is 20.0.

20.0
update_frequency float

Frequency of the update loop in Hz. Default is np.inf.

inf
Example
def create_plot(axs, sliders):
    axs[0].axhline(sliders[0]["slider"].val, color="r")
    axs[1].axvline(sliders[1]["slider"].val, color="r")

interactive_plot(
    nrows=2,
    ncols=1,
    sliders=[
        {"label": "a", "valmin": 0.0, "valmax": 1.0, "valinit": 0.3},
        {"label": "b", "valmin": 0.0, "valmax": 1.0, "valinit": 0.7},
    ],
    create_plot=create_plot,
)
Source code in CompNeuroPy/extra_functions.py
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
def __init__(
    self,
    nrows: int,
    ncols: int,
    sliders: list[dict],
    create_plot: Callable,
    update_loop: Callable | None = None,
    figure_frequency: float = 20.0,
    update_frequency: float = np.inf,
):
    """
    Create an interactive plot with sliders.

    Args:
        nrows (int):
            number of rows of subplots
        ncols (int):
            number of columns of subplots
        sliders (list):
            list of dictionaries with slider kwargs (see matplotlib.widgets.Slider), at
            least the following keys have to be present:
                - label (str):
                    label of the slider
                - valmin (float):
                    minimum value of the slider
                - valmax (float):
                    maximum value of the slider
        create_plot (Callable):
            function which fills the subplots, has to have the signature
            create_plot(axs, sliders), where axs is a list of axes (for each subplot)
            and sliders is the given sliders list with newly added keys "ax" (axes of
            the slider) and "slider" (the Slider object itself, so that you can access
            the slider values in the create_plot function using the .val attribute)
        update_loop (Callable, optional):
            Function which is called periodically. After each call the plot is updated.
            If None, the plot is only updated when a slider is changed. Default is None.
        figure_frequency (float, optional):
            Frequency of the figure update in Hz. Default is 20.0.
        update_frequency (float, optional):
            Frequency of the update loop in Hz. Default is np.inf.

    Example:
        ```python
        def create_plot(axs, sliders):
            axs[0].axhline(sliders[0]["slider"].val, color="r")
            axs[1].axvline(sliders[1]["slider"].val, color="r")

        interactive_plot(
            nrows=2,
            ncols=1,
            sliders=[
                {"label": "a", "valmin": 0.0, "valmax": 1.0, "valinit": 0.3},
                {"label": "b", "valmin": 0.0, "valmax": 1.0, "valinit": 0.7},
            ],
            create_plot=create_plot,
        )
        ```
    """
    self.create_plot = create_plot
    self._waiter = _Waiter(duration=2.0, on_finish=self._recreate_plot)
    plt.close("all")

    ### create the figure as large as the screen
    screen_width, screen_height = get_monitors()[0].width, get_monitors()[0].height
    figsize = (screen_width / 100, screen_height / 100)
    fig, axs = plt.subplots(nrows, ncols, figsize=figsize)
    self.fig = fig
    self.axs = axs

    ### create the sliders figure, set the axes for the sliders
    fig_sliders, axs_sliders = plt.subplots(
        len(sliders), 1, figsize=(6.4, 4.8 * len(sliders))
    )
    if len(sliders) == 1:
        axs_sliders = [axs_sliders]
    for slider_idx in range(len(sliders)):
        sliders[slider_idx]["ax"] = axs_sliders[slider_idx]

    ### initialize the sliders
    for slider_idx, slider_kwargs in enumerate(sliders):
        ### if init out of min max, change min max
        if "valinit" in slider_kwargs:
            if slider_kwargs["valinit"] < slider_kwargs["valmin"]:
                slider_kwargs["valmin"] = slider_kwargs["valinit"]
            elif slider_kwargs["valinit"] > slider_kwargs["valmax"]:
                slider_kwargs["valmax"] = slider_kwargs["valinit"]
        slider = Slider(**slider_kwargs)
        slider.on_changed(lambda val: self._waiter.start())
        sliders[slider_idx]["slider"] = slider

    self.sliders = sliders

    ### create the plot
    create_plot(axs, sliders)

    if update_loop is None:
        ### show the plot
        self.ani = FuncAnimation(
            self.fig,
            func=lambda frame: 0,
            frames=10,
            interval=(1.0 / figure_frequency) * 1000,
            repeat=True,
        )
        self.fig.tight_layout()
        plt.show()
    else:
        ### run update loop until figure is closed
        figure_pause = 1 / figure_frequency
        max_updates_per_pause = update_frequency / figure_frequency
        while plt.fignum_exists(fig.number):
            ### update figure
            self._recreate_plot
            plt.pause(figure_pause)
            ### in between do the update loop multiple times
            start = time.time()
            nr_updates = 0
            while (
                time.time() - start < figure_pause
                and nr_updates < max_updates_per_pause
            ):
                update_loop()
                nr_updates += 1

RNG #

Resettable random number generator.

Attributes:

Name Type Description
rng Generator

Random number generator.

Example
rng = RNG(seed=1234)
print(rng.rng.integers(0, 10, 5))
rng.reset()
print(rng.rng.integers(0, 10, 5))
Source code in CompNeuroPy/extra_functions.py
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
class RNG:
    """
    Resettable random number generator.

    Attributes:
        rng (np.random.Generator):
            Random number generator.

    Example:
        ```python
        rng = RNG(seed=1234)
        print(rng.rng.integers(0, 10, 5))
        rng.reset()
        print(rng.rng.integers(0, 10, 5))
        ```
    """

    def __init__(self, seed):
        """
        Args:
            seed (int):
                Seed for the random number generator.
        """
        self.rng = np.random.default_rng(seed=seed)
        self._original_seed = seed

    def reset(self):
        """
        Reset the random number generator to the original seed.
        """
        self.rng.bit_generator.state = np.random.default_rng(
            seed=self._original_seed
        ).bit_generator.state

__init__(seed) #

Parameters:

Name Type Description Default
seed int

Seed for the random number generator.

required
Source code in CompNeuroPy/extra_functions.py
2441
2442
2443
2444
2445
2446
2447
2448
def __init__(self, seed):
    """
    Args:
        seed (int):
            Seed for the random number generator.
    """
    self.rng = np.random.default_rng(seed=seed)
    self._original_seed = seed

reset() #

Reset the random number generator to the original seed.

Source code in CompNeuroPy/extra_functions.py
2450
2451
2452
2453
2454
2455
2456
def reset(self):
    """
    Reset the random number generator to the original seed.
    """
    self.rng.bit_generator.state = np.random.default_rng(
        seed=self._original_seed
    ).bit_generator.state

print_df(df, **kwargs) #

Prints the complete dataframe df

Parameters:

Name Type Description Default
df pandas dataframe or dict

Dataframe to be printed

required
Source code in CompNeuroPy/extra_functions.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def print_df(df: pd.DataFrame | dict, **kwargs):
    """
    Prints the complete dataframe df

    Args:
        df (pandas dataframe or dict):
            Dataframe to be printed
    """
    if isinstance(df, dict):
        df = pd.DataFrame.from_dict(df)
    with pd.option_context(
        "display.max_rows", None
    ):  # more options can be specified also
        print(df, **kwargs)

flatten_list(lst) #

Retuns flattened list

Parameters:

Name Type Description Default
lst list of lists or mixed values and lists

List to be flattened

required

Returns:

Name Type Description
new_list list

Flattened list

Source code in CompNeuroPy/extra_functions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def flatten_list(lst):
    """
    Retuns flattened list

    Args:
        lst (list of lists or mixed values and lists):
            List to be flattened

    Returns:
        new_list (list):
            Flattened list
    """

    ### if lists in lst --> upack them and retunr flatten_list of new list
    new_lst = []
    list_in_lst = False
    for val in lst:
        if isinstance(val, list):
            list_in_lst = True
            for sub_val in val:
                new_lst.append(sub_val)
        else:
            new_lst.append(val)

    if list_in_lst:
        return flatten_list(new_lst)
    ### else return lst
    else:
        return lst

remove_key(d, key) #

Removes an element from a dict, returns the new dict

Parameters:

Name Type Description Default
d dict

Dict to be modified

required
key str

Key to be removed

required

Returns:

Name Type Description
r dict

Modified dict

Source code in CompNeuroPy/extra_functions.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def remove_key(d, key):
    """
    Removes an element from a dict, returns the new dict

    Args:
        d (dict):
            Dict to be modified
        key (str):
            Key to be removed

    Returns:
        r (dict):
            Modified dict
    """
    r = dict(d)
    del r[key]
    return r

suppress_stdout() #

Suppresses the print output of a function

Example
with suppress_stdout():
    print("this will not be printed")
Source code in CompNeuroPy/extra_functions.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
@contextmanager
def suppress_stdout():
    """
    Suppresses the print output of a function

    Example:
        ```python
        with suppress_stdout():
            print("this will not be printed")
        ```
    """
    with open(os.devnull, "w") as devnull:
        old_stdout = sys.stdout
        sys.stdout = devnull
        try:
            yield
        finally:
            sys.stdout = old_stdout

sci(nr) #

Rounds a number to a single decimal. If number is smaller than 1 it is converted to scientific notation with 1 decimal.

Parameters:

Name Type Description Default
nr float or int

Number to be converted

required

Returns:

Name Type Description
str str

String of the number in scientific notation

Examples:

>>> sci(0.0001)
'1.0e-4'
>>> sci(1.77)
'1.8'
>>> sci(1.77e-5)
'1.8e-5'
>>> sci(177.22)
'177.2'
Source code in CompNeuroPy/extra_functions.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def sci(nr):
    """
    Rounds a number to a single decimal.
    If number is smaller than 1 it is converted to scientific notation with 1 decimal.

    Args:
        nr (float or int):
            Number to be converted

    Returns:
        str (str):
            String of the number in scientific notation

    Examples:
        >>> sci(0.0001)
        '1.0e-4'
        >>> sci(1.77)
        '1.8'
        >>> sci(1.77e-5)
        '1.8e-5'
        >>> sci(177.22)
        '177.2'
    """
    if nr >= 1:
        return str(round(nr, 1))
    else:
        return f"{nr:.1e}"

create_cm(colors, name='my_cmap', N=256, gamma=1.0, vmin=0, vmax=1) #

Create a LinearSegmentedColormap from a list of colors.

Parameters:

Name Type Description Default
colors array-like of colors or array-like of (value, color

If only colors are given, they are equidistantly mapped from the range :math:[0, 1]; i.e. 0 maps to colors[0] and 1 maps to colors[-1]. If (value, color) pairs are given, the mapping is from value to color. This can be used to divide the range unevenly.

required
name str

The name of the colormap, by default 'my_cmap'.

'my_cmap'
N int

The number of rgb quantization levels, by default 256.

256
gamma float

Gamma correction value, by default 1.0.

1.0
vmin float

The minimum value of the colormap, by default 0.

0
vmax float

The maximum value of the colormap, by default 1.

1

Returns:

Name Type Description
linear_colormap _LinearColormapClass

The colormap object

Source code in CompNeuroPy/extra_functions.py
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def create_cm(colors, name="my_cmap", N=256, gamma=1.0, vmin=0, vmax=1):
    """
    Create a `LinearSegmentedColormap` from a list of colors.

    Args:
        colors (array-like of colors or array-like of (value, color)):
            If only colors are given, they are equidistantly mapped from the
            range :math:`[0, 1]`; i.e. 0 maps to ``colors[0]`` and 1 maps to
            ``colors[-1]``.
            If (value, color) pairs are given, the mapping is from *value*
            to *color*. This can be used to divide the range unevenly.
        name (str, optional):
            The name of the colormap, by default 'my_cmap'.
        N (int, optional):
            The number of rgb quantization levels, by default 256.
        gamma (float, optional):
            Gamma correction value, by default 1.0.
        vmin (float, optional):
            The minimum value of the colormap, by default 0.
        vmax (float, optional):
            The maximum value of the colormap, by default 1.

    Returns:
        linear_colormap (_LinearColormapClass):
            The colormap object
    """
    if not np.iterable(colors):
        raise ValueError("colors must be iterable")

    if (
        isinstance(colors[0], Sized)
        and len(colors[0]) == 2
        and not isinstance(colors[0], str)
    ):
        # List of value, color pairs
        vals, colors = zip(*colors)
        vals = np.array(vals).astype(float)
        colors = list(colors)
        ### insert values for 0 and 1 if not given
        ### they equal the colors of the borders of the given range
        if vals.min() != 0.0:
            colors = [colors[np.argmin(vals)]] + colors
            vals = np.insert(vals, 0, 0.0)
        if vals.max() != 1.0:
            colors = colors + [colors[np.argmax(vals)]]
            vals = np.insert(vals, len(vals), 1.0)
    else:
        vals = np.linspace(0, 1, len(colors))

    ### sort values and colors, they have to increase
    sort_idx = np.argsort(vals)
    vals = vals[sort_idx]
    colors = [colors[idx] for idx in sort_idx]

    r_g_b_a = np.zeros((len(colors), 4))
    for color_idx, color in enumerate(colors):
        if isinstance(color, str):
            ### color given by name
            r_g_b_a[color_idx] = to_rgba_array(color)
        else:
            ### color given by rgb(maybe a) value
            color = np.array(color).astype(float)
            ### check color size
            if len(color) != 3 and len(color) != 4:
                raise ValueError(
                    "colors must be names or consist of 3 (rgb) or 4 (rgba) numbers"
                )
            if color.max() > 1:
                ### assume that max value is 255
                color[:3] = color[:3] / 255
            if len(color) == 4:
                ### gamma already given
                r_g_b_a[color_idx] = color
            else:
                ### add gamma
                r_g_b_a[color_idx] = np.concatenate([color, np.array([gamma])])
    r = r_g_b_a[:, 0]
    g = r_g_b_a[:, 1]
    b = r_g_b_a[:, 2]
    a = r_g_b_a[:, 3]

    cdict = {
        "red": np.column_stack([vals, r, r]),
        "green": np.column_stack([vals, g, g]),
        "blue": np.column_stack([vals, b, b]),
        "alpha": np.column_stack([vals, a, a]),
    }

    return _LinearColormapClass(name, cdict, N, gamma, vmin, vmax)

evaluate_expression_with_dict(expression, value_dict) #

Evaluate a mathematical expression using values from a dictionary.

This function takes a mathematical expression as a string and a dictionary containing variable names as keys and corresponding values as numpy arrays. It replaces the variable names in the expression with their corresponding values from the dictionary and evaluates the expression.

Parameters:

Name Type Description Default
expression str

A mathematical expression to be evaluated. Variable names in the expression should match the keys in the value_dict.

required
value_dict dict

A dictionary containing variable names (strings) as keys and corresponding numpy arrays or numbers as values.

required

Returns:

Name Type Description
result value or array

The result of evaluating the expression using the provided values.

Examples:

>>> my_dict = {"a": np.ones(10), "b": np.arange(10)}
>>> my_string = "a*2-b+10"
>>> evaluate_expression_with_dict(my_string, my_dict)
array([12., 11., 10.,  9.,  8.,  7.,  6.,  5.,  4.,  3.])
Source code in CompNeuroPy/extra_functions.py
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def evaluate_expression_with_dict(expression, value_dict):
    """
    Evaluate a mathematical expression using values from a dictionary.

    This function takes a mathematical expression as a string and a dictionary
    containing variable names as keys and corresponding values as numpy arrays.
    It replaces the variable names in the expression with their corresponding
    values from the dictionary and evaluates the expression.

    Args:
        expression (str):
            A mathematical expression to be evaluated. Variable
            names in the expression should match the keys in the value_dict.
        value_dict (dict):
            A dictionary containing variable names (strings) as
            keys and corresponding numpy arrays or numbers as values.

    Returns:
        result (value or array):
            The result of evaluating the expression using the provided values.

    Examples:
        >>> my_dict = {"a": np.ones(10), "b": np.arange(10)}
        >>> my_string = "a*2-b+10"
        >>> evaluate_expression_with_dict(my_string, my_dict)
        array([12., 11., 10.,  9.,  8.,  7.,  6.,  5.,  4.,  3.])
    """
    # Replace dictionary keys in the expression with their corresponding values
    ### replace names with dict entries
    expression = _replace_names_with_dict(
        expression=expression, name_of_dict="value_dict", dictionary=value_dict
    )

    ### evaluate the new expression
    try:
        result = eval(expression)
        return result
    except Exception as e:
        raise ValueError(f"Error while evaluating expression: {str(e)}")

efel_loss(trace1, trace2, feature_list) #

Calculate the loss between two traces using the features from the feature_list.

Parameters:

Name Type Description Default
trace1 dict

dictionary with the keys "T" (time), "V" (voltage), "stim_start" (start of the stimulus), "stim_end" (end of the stimulus)

required
trace2 dict

dictionary with the keys "T" (time), "V" (voltage), "stim_start" (start of the stimulus), "stim_end" (end of the stimulus)

required
feature_list list

list of feature names which should be used to calculate the loss (see https://efel.readthedocs.io/en/latest/eFeatures.html, some of them are available)

required

Returns:

Name Type Description
loss array

array with the loss

Source code in CompNeuroPy/extra_functions.py
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
def efel_loss(trace1, trace2, feature_list):
    """
    Calculate the loss between two traces using the features from the feature_list.

    Args:
        trace1 (dict):
            dictionary with the keys "T" (time), "V" (voltage), "stim_start" (start of
            the stimulus), "stim_end" (end of the stimulus)
        trace2 (dict):
            dictionary with the keys "T" (time), "V" (voltage), "stim_start" (start of
            the stimulus), "stim_end" (end of the stimulus)
        feature_list (list):
            list of feature names which should be used to calculate the loss (see
            https://efel.readthedocs.io/en/latest/eFeatures.html, some of them are
            available)

    Returns:
        loss (np.array):
            array with the loss
    """
    verbose = False
    ### set a plausible "maximum" absolute difference for each feature
    diff_max = {
        "steady_state_voltage_stimend": 200,
        "steady_state_voltage": 200,
        "voltage_base": 200,
        "voltage_after_stim": 200,
        "minimum_voltage": 200,
        "time_to_first_spike": trace1["T"][-1] - trace1["stim_start"][0],
        "time_to_second_spike": trace1["T"][-1] - trace1["stim_start"][0],
        "time_to_last_spike": trace1["T"][-1] - trace1["stim_start"][0],
        "spike_count": len(trace1["T"]),
        "spike_count_stimint": len(
            trace1["T"][
                (
                    (trace1["T"] >= trace1["stim_start"][0]).astype(int)
                    * (trace1["T"] < trace1["stim_end"][0]).astype(int)
                ).astype(bool)
            ]
        ),
        "ISI_CV": 1,
    }
    if verbose:
        print(f"\ndiff_max: {diff_max}")

    ### set a plausible "close" absolute difference for each feature
    diff_close = {
        "steady_state_voltage_stimend": 10,
        "steady_state_voltage": 10,
        "voltage_base": 10,
        "voltage_after_stim": 10,
        "minimum_voltage": 10,
        "time_to_first_spike": np.clip(
            (trace1["T"][-1] - trace1["stim_start"][0]) * 0.1, 5, 50
        ),
        "time_to_second_spike": np.clip(
            (trace1["T"][-1] - trace1["stim_start"][0]) * 0.1, 5, 50
        ),
        "time_to_last_spike": np.clip(
            (trace1["T"][-1] - trace1["stim_start"][0]) * 0.1, 5, 50
        ),
        "spike_count": np.ceil((trace1["T"][-1] - trace1["T"][0]) / 200),
        "spike_count_stimint": np.ceil((trace1["T"][-1] - trace1["T"][0]) / 200),
        "ISI_CV": 0.1,
    }
    if verbose:
        print(f"\ndiff_close: {diff_close}\n")

    ### catch if features from feature_list are not supported
    features_not_supported = [
        feature for feature in feature_list if feature not in diff_max
    ]
    if features_not_supported:
        raise ValueError(f"Features not supported: {features_not_supported}")

    ### catch "exploding" neurons by returning max loss of features
    if (
        np.any(trace1["V"] < -200)
        or np.any(trace1["V"] > 100)
        or np.any(trace2["V"] < -200)
        or np.any(trace2["V"] > 100)
    ):
        loss = 0
        for feature in feature_list:
            loss += diff_max[feature] / diff_close[feature]
        loss /= len(feature_list)
        loss = np.array([loss])
        if verbose:
            print(f"loss: {loss}")
        return loss

    ### calculate and return the mean of the differences of the features
    features_1, features_2 = efel.get_feature_values(
        [trace1, trace2],
        feature_list,
        raise_warnings=False,
    )
    if verbose:
        print(f"\nfeatures_1: {features_1}\n")
        print(f"features_2: {features_2}\n")
    loss = 0
    for feature in feature_list:
        ### if both features are None use 0
        if features_1[feature] is None and features_2[feature] is None:
            diff = 0
        ### if single feature is None use diff_max
        elif features_1[feature] is None or features_2[feature] is None:
            diff = diff_max[feature]
        ### if features contain multiple values use the mean TODO not tested yet
        elif len(features_1[feature]) > 1 or len(features_2[feature]) > 1:
            if verbose:
                print("features with multiple values not tested yet!")
            diff = np.mean(
                np.absolute(features_1[feature] - features_2[feature]), keepdims=True
            )
        else:
            diff = np.absolute(features_1[feature] - features_2[feature])
        ### scale the difference by diff_close and add to loss
        loss += diff / diff_close[feature]
    loss /= len(feature_list)

    if verbose:
        print(f"loss: {loss}")
    return loss

find_x_bound(y, x0, y_bound, tolerance=1e-05, bound_type='equal') #

Find the x value such that y(x) is closest to y_bound within a given tolerance. The value y_bound should be reachable by y(x) by increasing x from the initial value x0.

Parameters:

Name Type Description Default
y Callable[[float], float]

A function that takes a single float argument and returns a single float value.

required
x0 float

The initial value of x to start the search.

required
y_bound float

The target value of y.

required
tolerance float

The tolerance for the difference between y(x) and y_bound. Defaults to 1e-5.

1e-05
bound_type str

The type of bound to find. Can be 'equal'(y(x) should be close to y_bound), 'greater'(y(x) should be close to y_bound and greater), or 'less'(y(x) should be close to y_bound and less). Defaults to 'equal'.

'equal'

Returns:

Name Type Description
x_bound float

The x value such that y(x) is closest to y_bound within the tolerance.

Source code in CompNeuroPy/extra_functions.py
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
def find_x_bound(
    y: Callable[[float], float],
    x0: float,
    y_bound: float,
    tolerance: float = 1e-5,
    bound_type: str = "equal",
) -> float:
    """
    Find the x value such that y(x) is closest to y_bound within a given tolerance. The
    value y_bound should be reachable by y(x) by increasing x from the initial value x0.

    Args:
        y (Callable[[float], float]):
            A function that takes a single float argument and returns a single float
            value.
        x0 (float):
            The initial value of x to start the search.
        y_bound (float):
            The target value of y.
        tolerance (float, optional):
            The tolerance for the difference between y(x) and y_bound. Defaults to 1e-5.
        bound_type (str, optional):
            The type of bound to find. Can be 'equal'(y(x) should be close to y_bound),
            'greater'(y(x) should be close to y_bound and greater), or 'less'(y(x) should
            be close to y_bound and less). Defaults to 'equal'.

    Returns:
        x_bound (float):
            The x value such that y(x) is closest to y_bound within the tolerance.
    """
    # Catch invalid bound type
    if bound_type not in ["equal", "greater", "less"]:
        raise ValueError("bound_type should be 'equal', 'greater', or 'less'.")

    # Check if the initial value y(x0) is already y_bound
    y0 = y(x0)
    if np.isclose(y0, y_bound, atol=tolerance):
        sf.Logger().log("Warning: The initial value is already equal to y_bound.")
        return x0, x0

    sf.Logger().log(f"x0: {x0}, y0: {y0}, y_bound: {bound_type} {y_bound}")

    # Define a helper function to find x such that y(x) - y_bound = 0
    def func(x):
        return y(x) - y_bound

    # Exponential search to find an interval [a, b] where y(a) < y_bound < y(b)
    a = x0
    b = x0 + 1
    while func(b) < 0:
        a = b
        b *= 2
        if b > 1e6:  # Avoid infinite loop in case y_bound is not reachable
            break
    if b > 1e6:
        raise ValueError(
            "y_bound cannot be reached, the function saturates below y_bound."
        )
    sf.Logger().log(f"a: {a}, b: {b}")

    # Use brentq to find the root within the interval [a, b]
    x_root: float = brentq(func, a, b, full_output=False)
    y_root = y(x_root)
    sf.Logger().log(f"y(x_root={x_root}) = {y_root}")

    # check if y(x_root) is not within the tolerance of y_bound
    if not np.isclose(y_root, y_bound, atol=tolerance):
        sf.Logger().log(
            f"Warning: y(x_root) is not within the tolerance of y_bound (y(x_root)={y_root}, y_bound={y_bound}, tolerance={tolerance})!"
        )

    if bound_type == "equal":
        # Return the x value such that y(x) = y_bound
        sf.Logger().log(f"Returning y(x={x_root}) = {y_root}")
        return x_root

    if bound_type == "greater" and y_root > y_bound:
        # Return the x value such that y(x) > y_bound
        sf.Logger().log(f"Returning y(x={x_root}) = {y_root}")
        return x_root

    if bound_type == "less" and y_root < y_bound:
        # Return the x value such that y(x) < y_bound
        sf.Logger().log(f"Returning y(x={x_root}) = {y_root}")
        return x_root

    # Calculate the gradient at x_root
    dx = np.abs(x_root - x0) * 1e-3
    grad_y = (y(x_root + dx) - y(x_root - dx)) / (2 * dx)

    # Define epsilon based on the gradient
    epsilon = tolerance / np.abs(grad_y) if grad_y != 0 else tolerance

    if bound_type == "greater":
        # Find the x value such that y(x) > y_bound (thus maybe increase x)
        # do this by incrementaly increasing x by epsilon until y(x) is greater than
        # y_bound
        # if y(x+epsilon)-y(x) is less than the tolerance, increase epsilon
        x = x_root
        y_val = y(x)
        while y_val < y_bound:
            y_val_prev = y_val
            x += epsilon
            y_val = y(x)
            if y_val - y_val_prev < tolerance / 10:
                epsilon *= 2
        sf.Logger().log(f"Returning y(x={x}) = {y_val}")
        return x
    elif bound_type == "less":
        # Find the x value such that y(x) < y_bound (thus maybe decrease x)
        # do this by incrementaly decreasing x by epsilon until y(x) is less than
        # y_bound
        # if y(x)-y(x-epsilon) is less than the tolerance, increase epsilon
        x = x_root
        y_val = y(x)
        while y_val > y_bound:
            y_val_prev = y_val
            x -= epsilon
            y_val = y(x)
            if y_val_prev - y_val < tolerance / 10:
                epsilon *= 2
        sf.Logger().log(f"Returning y(x={x}) = {y_val}")
        return x