Simulation Functions
SimulationEvents
#
Class to create a Simulation consiting of multiple events. Add the effects (functions) of the events in a class which inherits from SimulationEvents. Within the effect functions you can use the attributes of the class which inherits from SimulationEvents. Do never simulate within the effect functions of the events. The simulation is done between the events.
Warning
The onset of events and trigger times should be given in simulation steps (not in ms). The 'end' event has to be triggered to end the simulation (otherwise it will be triggered right at the beginning).
Example
from CompNeuroPy import SimulationEvents
### define a class which inherits from SimulationEvents
### define the effects of the events in the class
class MySim(SimulationEvents):
def __init__(
self,
p=0.8,
verbose=False,
):
### set attributes which should be used in the effect functions
self.p = p
super().__init__(verbose=verbose)
def effect1(self):
### set the parameter of a population to the value of p
pop.parameter = self.p
def effect2(self):
### set the parameter of a population to 0
pop.parameter = 0
### create the simulation object
my_sim = MySim()
### add events to the simulation
### start event right at the beginning which triggers event1 after 100 ms
my_sim.add_event(name="start", trigger={"event1": 100})
### event1 causes effect1 and triggers event2 after 200 ms
my_sim.add_event(name="event1", effect=my_sim.effect1, trigger={"event2": 200})
### event2 causes effect2 and triggers end event after 300 ms
my_sim.add_event(name="event2", effect=my_sim.effect2, trigger={"end": 300})
### run the simulation
my_sim.run()
Source code in CompNeuroPy/simulation_functions.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
|
__init__(verbose=False)
#
Parameters:
Name | Type | Description | Default |
---|---|---|---|
verbose |
bool
|
if True, additional information is printed during simulation |
False
|
Source code in CompNeuroPy/simulation_functions.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
add_event(name, onset=None, model_trigger=None, requirement_string=None, effect=None, trigger=None)
#
Adds an event to the simulation. You always have to trigger the end event to end the simulation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
name of the event |
required |
onset |
int
|
time in simulation steps when the event should occur |
None
|
model_trigger |
str
|
name of population which can trigger the event (by setting variable decision to -1) |
None
|
requirement_string |
str
|
string containing the requirements for the event to occur TODO: replace with function |
None
|
effect |
function
|
Function which is executed during the event. Within the effect function you can use the attributes of the class which inherits from SimulationEvents. |
None
|
trigger |
dict
|
dictionary containing the names of other events as keys and the relative time in simulation steps to the onset of the current event as values. The values can also be callable functions which return the time (without any aruments). They are called when this event is triggered. |
None
|
Source code in CompNeuroPy/simulation_functions.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
run()
#
Run the simulation. The simulation runs until the end event is triggered. The simulation can be run multiple times by calling this function multiple times.
Source code in CompNeuroPy/simulation_functions.py
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
|
attr_sim(pop, attr_dict, t=500)
#
Simulates a period 't' setting the attributes of a given population to the values specified in 'attr_list', after this simulation the attributes are reset to initial values (before simulation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population whose attributes should be set |
required |
attr_dict |
dict
|
dictionary containing the attributes and their values |
required |
t |
int
|
duration in ms |
500
|
Returns:
Name | Type | Description |
---|---|---|
attr_list_dict |
dict
|
dictionary containing the attribute values for each time step, keys are the attribute names |
Source code in CompNeuroPy/simulation_functions.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
attribute_step(pop, attr, t1=500, t2=500, v1=0, v2=100)
#
Simulates an attribute step for a given population.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population whose attribute should be changed |
required |
attr |
str
|
name of attribute which should be changed |
required |
t1 |
int
|
time in ms before step |
500
|
t2 |
int
|
time in ms after step |
500
|
v1 |
int
|
value of attribute for t1 |
0
|
v2 |
int
|
value of attribute for t2 |
100
|
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Source code in CompNeuroPy/simulation_functions.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
attr_ramp(pop, attr, v0, v1, dur, n)
#
Simulating while constantly changing the attribute of a given population. After this attr_ramp simulation the attribute value is reset to the initial value (before simulation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population whose attribute should be changed |
required |
attr |
str
|
name of attribute which should be changed |
required |
v0 |
int
|
initial value of attribute (of first stimulation) |
required |
v1 |
int
|
final value of attribute (of last stimulation) |
required |
dur |
int
|
duration of the complete ramp simulation |
required |
n |
int
|
number of steps for changing the attribute |
required |
Warning
dur/n should be divisible by the simulation time step without remainder
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Raises:
Type | Description |
---|---|
ValueError
|
if resulting duration of one stimulation is not divisible by the simulation time step without remainder |
Source code in CompNeuroPy/simulation_functions.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
increasing_attr(pop, attr, v0, dv, nr_steps, dur_step)
#
Conducts multiple simulations while constantly increasing the attribute of a given population. After this simulation the attribute value is reset to the initial value (before simulation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population whose attribute should be changed |
required |
v0 |
int
|
initial attribute value (of first stimulation) |
required |
dv |
int
|
attribute step size |
required |
nr_steps |
int
|
number of simulations with different attribute values |
required |
dur_step |
int
|
duration of one step simulation |
required |
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Source code in CompNeuroPy/simulation_functions.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
current_step(pop, t1=500, t2=500, a1=0, a2=100)
#
Stimulates a given population in two periods with two input currents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population, which should be stimulated with input current neuron model of population has to contain "I_app" as input current |
required |
t1 |
int
|
time in ms before current step |
500
|
t2 |
int
|
time in ms after current step |
500
|
a1 |
int
|
current amplitude before current step |
0
|
a2 |
int
|
current amplitude after current step |
100
|
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Source code in CompNeuroPy/simulation_functions.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
current_stim(pop, t=500, a=100)
#
Stimulates a given population during specified period 't' with input current with amplitude 'a', after this stimulation the current is reset to initial value (before stimulation).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population, which should be stimulated with input current neuron model of population has to contain "I_app" as input current |
required |
t |
int
|
duration in ms |
500
|
a |
int
|
current amplitude |
100
|
Returns:
Name | Type | Description |
---|---|---|
current_arr |
array
|
array of current values for each time step |
Source code in CompNeuroPy/simulation_functions.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
current_ramp(pop, a0, a1, dur, n)
#
Conducts multiple current stimulations with constantly changing current inputs. After this current_ramp stimulation the current amplitude is reset to the initial value (before current ramp).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population, which should be stimulated with input current neuron model of population has to contain "I_app" as input current |
required |
a0 |
int
|
initial current amplitude (of first stimulation) |
required |
a1 |
int
|
final current amplitude (of last stimulation) |
required |
dur |
int
|
duration of the complete current ramp (all stimulations) |
required |
n |
int
|
number of stimulations |
required |
Warning
dur/n should be divisible by the simulation time step without remainder
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Raises:
Type | Description |
---|---|
ValueError
|
if resulting duration of one stimulation is not divisible by the simulation time step without remainder |
Source code in CompNeuroPy/simulation_functions.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
increasing_current(pop, a0, da, nr_steps, dur_step)
#
Conducts multiple current stimulations with constantly increasing current inputs. After this increasing_current stimulation the current amplitude is reset to the initial value (before increasing_current).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pop |
str
|
population name of population, which should be stimulated with input current neuron model of population has to contain "I_app" as input current |
required |
a0 |
int
|
initial current amplitude (of first stimulation) |
required |
da |
int
|
current step size |
required |
nr_steps |
int
|
number of stimulations |
required |
dur_step |
int
|
duration of one stimulation |
required |
Returns:
Name | Type | Description |
---|---|---|
return_dict |
dict
|
dictionary containing:
|
Source code in CompNeuroPy/simulation_functions.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|