Skip to content

Monitors / Recordings

Create Monitors#

CompNeuroPy provides a CompNeuroMonitors class that can be used to easily create and control multiple ANNarchy monitors at once. To create a CompNeuroMonitors object, all that is needed is a monitors_dictionary that defines which variables should be recorded for each model component. All populations and projections have to have unique names to work with CompNeuroMonitors. The keys of the monitor_dictionary are the names of the model components (in example below "my_pop1" and "my_pop2"). The key can also include a recording period (the time between two recordings, given after a ";"), e.g. record the variables of my_pop1 only every 10 ms would look like this: 'my_pop1;10':['v', 'spike']. The default period is the time step of the simulation for populations and 1000 times the timestep for projections. The values of the monitor_dictionary are lists of all the variables that should be recorded from the corresponding components. The names of components (populations, projections) could be provided by a CompNeuroModel.

Example

Here the variables v and spike should be recorded of the population with the name "my_pop1" and the variable v should be recorded from the population with the name "my_pop2":

from CompNeuroPy import CompNeuroMonitors
monitor_dictionary = {'my_pop1':['v', 'spike'], 'my_pop2':['v']}
mon = CompNeuroMonitors(monitor_dictionary)

A full example is available in the Examples.

Chunks and periods#

In CompNeuroPy, recordings are divided into so-called chunks and periods. Chunks are simulation sections that are separated by monitor resets (optionally also reset the model). A chunk can consist of several periods. A period represents the time span between the start and pause of a monitor recording. To divide a simulation into chunks and periods, a CompNeuroMonitors object provides the three functions start(), pause() and reset().

At the beginning of a simulation, the monitors do not start automatically which is why the start() function must be called at least once. The start() function can also be used to resume paused recordings. With the function pause() recordings are paused. The function reset() starts a new chunk for the recordings (the end of a chunk is also always the end of a period, i.e. the last period of the corresponding chunk). After calling reset() the monitors remain in their current mode (active or paused). By default reset() also resets the model to the compile status (time = 0) by calling the ANNarchy reset() function and has the same arguments. If the argument model is set to False, the ANNarchy reset() function is not called and only a new chunk is created.

Example

### first chunk, one period
simulate(100) # 100 ms not recorded
mon.start()   # start all monitors
simulate(100) # 100 ms recorded

### second chunk, two periods
mon.reset()   # model reset, beginning of new chunk
simulate(100) # 100 ms recorded (monitors were active before reset --> still active)
mon.pause()   # pause all monitors
simulate(100) # 100 ms not recorded
mon.start()   # start all monitors
simulate(100) # 100 ms recorded

Get recordings#

The recordings can be obtained from the CompNeuroMonitors object using the get_recordings() function. This returns a list of dictionaries (one for each chunk). The dictionaries contain the recorded data defined with the monitor_dictionary at the CompNeuroMonitors initialization. In the recordings dictionaries the keys have the following structure: "<component_name>;variable"; the corresponding dictionary values are the recordings of the respective variable. The dictionaries always contain the time step of the simulation (key = "dt"), the periods (time between recorded values) for each component (key = "<component_name>;period") and the attributes of each component (key = "<component_name>;parameter_dict").

Example

recordings = mon.get_recordings()
y1 = recordings[0]['my_pop1;v'] ### variable v of my_pop1 from 1st chunk
y2 = recordings[1]['my_pop1;v'] ### variable v of my_pop1 from 2nd chunk

Get recording times#

In addition to the recordings themselves, recording times can also be obtained from the CompNeuroMonitors object, which is very useful for later analyses. With the function get_recording_times() of the CompNeuroMonitors object a RecordingTimes object can be obtained. From the RecordingTimes object one can get time limits (in ms) and coresponding indizes for the recordings.

Example

recording_times = mon.get_recording_times()
start_time = recording_times.time_lims(chunk=1, period=1)[0] ### 200 ms
start_idx  = recording_times.idx_lims(chunk=1, period=1)[0]  ### 1000, if dt == 0.1
end_time   = recording_times.time_lims(chunk=1, period=1)[1] ### 300 ms
end_idx    = recording_times.idx_lims(chunk=1, period=1)[1]  ### 2000

You can combine the recordings of both chunks of the example simulation shown above into a single time array and a single value array using the RecordingTimes object's combine_chunks function:

time_arr, value_arr = recording_times.combine_chunks(recordings, 'my_pop1;v', 'consecutive')

Plot recordings#

To get a quick overview of the recordings, CompNeuroPy provides the PlotRecordings class.

CompNeuroPy.monitors.CompNeuroMonitors #

Class to bring together ANNarchy monitors into one object.

Source code in CompNeuroPy/monitors.py
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
class CompNeuroMonitors:
    """
    Class to bring together ANNarchy monitors into one object.
    """

    def __init__(self, mon_dict={}):
        """
        Initialize CompNeuroMonitors object by creating ANNarchy monitors.

        Args:
            mon_dict (dict):
                dict with key="compartment_name;period" where period is optional and
                val=list with variables to record.
        """
        self.mon = self._add_monitors(mon_dict)
        self.mon_dict = mon_dict
        self._init_internals(init_call=True)

    def _init_internals(self, init_call=False):
        """
        Initialize the following internal variables:
            - timings (dict):
                dict with key="pop_name" for populations and "proj_name" for projections
                for each recorded population and projection and
                val={"currently_paused": True, "start": [], "stop": []}
            - recordings (list):
                list with recordings of all chunks. Set to empty list.
            - recording_times (list):
                list with recording times of all chunks. Set to empty list.
            - already_got_recordings (bool):
                True if recordings were already requested, False otherwise. Set to
                False.
            - already_got_recording_times (bool):
                True if recording_times were already requested, False otherwise. Set to
                False.
            - get_recordings_reset_call (bool):
                True if get_recordings() and get_recording_times() are called within
                reset(), False otherwise. Set to False.

        Args:
            init_call (bool, optional):
                True if called from __init__(), False otherwise. Default: False.
        """
        if init_call is False:
            #### pause all ANNarchy monitors because currently paused will be set to False
            self.pause()

        ### initialize timings
        timings = {}
        for key, val in self.mon_dict.items():
            _, compartment, _ = self._unpack_mon_dict_keys(key)
            timings[compartment] = {"currently_paused": True, "start": [], "stop": []}
        self.timings = timings

        ### initialize recordings and recording_times etc.
        self.recordings = []
        self.recording_times = []
        self.already_got_recordings = False
        self.already_got_recording_times = False
        self.get_recordings_reset_call = False

    @check_types()
    def start(self, compartment_list: list | None = None):
        """
        Start or resume recording of all recorded compartments in compartment_list.

        Args:
            compartment_list (list, optional):
                List with compartment names to start or resume recording. Default: None,
                i.e., all compartments of initialized mon_dict are started or resumed.
        """
        if compartment_list == None:
            mon_dict_key_list = list(self.mon_dict.keys())
            compartment_list = [
                self._unpack_mon_dict_keys(key)[1] for key in mon_dict_key_list
            ]

        self.timings = self._start_monitors(compartment_list, self.mon, self.timings)

    @check_types()
    def pause(self, compartment_list: list | None = None):
        """
        Pause recording of all recorded compartments in compartment_list.

        Args:
            compartment_list (list, optional):
                List with compartment names to pause recording. Default: None,
                i.e., all compartments of initialized mon_dict are paused.
        """
        if compartment_list == None:
            mon_dict_key_list = list(self.mon_dict.keys())
            compartment_list = [
                self._unpack_mon_dict_keys(key)[1] for key in mon_dict_key_list
            ]

        self.timings = self._pause_monitors(compartment_list, self.mon, self.timings)

    def reset(
        self,
        populations=True,
        projections=False,
        synapses=False,
        monitors=True,
        model=True,
        parameters=True,
        net_id=0,
    ):
        """
        Create a new recording chunk by getting recordings and recording times of the
        current chunk and optionally resetting the model. Recordings are automatically
        resumed in the new chunk if they are not paused.

        Args:
            populations (bool, optional):
                If True, reset populations. Default: True.
            projections (bool, optional):
                If True, reset projections. Default: False.
            synapses (bool, optional):
                If True, reset synapses. Default: False.
            monitors (bool, optional):
                If True, reset ANNarchy monitors. Default: True.
            model (bool, optional):
                If True, reset model. Default: True.
            parameters (bool, optional):
                If True, reset the parameters of popilations and projections. Default:
                True.
            net_id (int, optional):
                Id of the network to reset. Default: 0.
        """
        ### TODO rename this function to new_chunk() or something like that and let
        ### recordings and recording times be returned
        self.get_recordings_reset_call = True
        self.get_recordings()
        self.get_recording_times()
        self.get_recordings_reset_call = False
        self.already_got_recordings = (
            False  # after reset one can still update recordings
        )
        self.already_got_recording_times = (
            False  # after reset one can still update recording_times
        )

        ### reset timings, after reset, add a zero to start if the monitor is still
        ### running (this is not resetted by reset())
        ### if the model was not resetted --> do add current time instead of zero
        for key in self.timings.keys():
            self.timings[key]["start"] = []
            self.timings[key]["stop"] = []
            if self.timings[key]["currently_paused"] == False:
                if model:
                    self.timings[key]["start"].append(0)
                else:
                    self.timings[key]["start"].append(
                        np.round(ann.get_time(), af.get_number_of_decimals(ann.dt()))
                    )

        ### reset model
        if model:
            if parameters is False:
                ### if parameters=False, get parameters before reset and set them after
                ### reset
                parameters_dict = mf._get_all_parameters()
            ann.reset(populations, projections, synapses, monitors, net_id=net_id)
            if parameters is False:
                ### if parameters=False, set parameters after reset
                mf._set_all_parameters(parameters_dict)

    def current_chunk(self):
        """
        Get the index of the current chunk.

        Returns:
            current_chunk_idx (int):
                Index of the current chunk. If no recordings are currently active,
                returns None.
        """
        ### if recordings are currently active --> return chunk in which these recordings will be saved
        ### check if there are currently active recordings
        active_recordings = False
        for key, val in self.mon_dict.items():
            _, compartment, _ = self._unpack_mon_dict_keys(key)
            if not (self.timings[compartment]["currently_paused"]):
                ### tere are currently active recordings
                active_recordings = True

        if active_recordings:
            current_chunk_idx = len(self.recordings)
            return current_chunk_idx
        else:
            ### if currently no recordings are active return None
            return None

    def get_recordings(self) -> list[dict]:
        """
        Get recordings of all recorded compartments.

        Returns:
            recordings (list):
                List with recordings of all chunks.
        """
        ### only if recordings in current chunk and get_recodings was not already called add current chunk to recordings
        if (
            self._any_recordings_in_current_chunk()
            and self.already_got_recordings is False
        ):
            ### update recordings
            self.recordings.append(self._get_monitors(self.mon_dict, self.mon))
            ### upade already_got_recordings --> it will not update recordings again
            self.already_got_recordings = True

            if not (self.get_recordings_reset_call):
                if len(self.recordings) == 0:
                    print(
                        "WARNING get_recordings: no recordings available, empty list returned. Maybe forgot start()?"
                    )
            return self.recordings
        else:
            if not (self.get_recordings_reset_call):
                if len(self.recordings) == 0:
                    print(
                        "WARNING get_recordings: no recordings available, empty list returned. Maybe forgot start()?"
                    )
            return self.recordings

    def get_recording_times(self):
        """
        Get recording times of all recorded compartments.

        Returns:
            recording_times (recording_times_cl):
                Object with recording times of all chunks.
        """

        temp_timings = self._get_temp_timings()

        ### only append temp_timings of current chunk if there are recordings in current chunk at all and if get_recordings was not already called (double call would add the same chunk again)
        if (
            self._any_recordings_in_current_chunk()
            and self.already_got_recording_times is False
        ):
            self.recording_times.append(temp_timings)

        ### upade already_got_recording_times --> it will not update recording_times again
        self.already_got_recording_times = True

        ### generate a object from recording_times and return this instead of the dict
        recording_times_ob = RecordingTimes(self.recording_times)

        if not (self.get_recordings_reset_call):
            if len(self.recording_times) == 0:
                print(
                    "WARNING get_recording_times: no recordings available, empty list returned. Maybe forgot start()?"
                )
        return recording_times_ob

    def get_recordings_and_clear(self):
        """
        The default get_recordings method should be called at the end of the simulation.
        The get_recordings_and_clear method allows to get several times recordings with
        the same monitor object and to simulate between the calls. Sets the internal
        variables back to their initial state. Usefull if you repeat a simulation +
        recording several times and you do not want to always create new chunks.

        !!! warning
            If you want to continue recording after calling this method, you have to
            call start() again.

        Returns:
            recordings (list):
                List with recordings of all chunks.
            recording_times (recording_times_cl):
                Object with recording times of all chunks.
        """
        ret0 = self.get_recordings()
        ret1 = self.get_recording_times()
        self._init_internals()
        ret = (ret0, ret1)
        return ret

    def _correct_start_stop(self, start_time_arr, stop_time_arr, period):
        """
        Corrects the start and stop times of recordings to the actual start and stop
        times of recorded values.

        Args:
            start_time_arr (np.array):
                Array with start times of recordings, obtained with get_time() function
                of ANNarchy.
            stop_time_arr (np.array):
                Array with stop times of recordings, obtained with get_time() function
                of ANNarchy.
            period (float):
                Time difference between recording values specified by the user.

        Returns:
            actual_start_time (np.array):
                Array with actual start times of recorded values.
            actual_stop_time (np.array):
                Array with actual stop times of recorded values.
            nr_rec_vals (np.array):
                Array with number of recorded values between start and stop.
        """
        # actual_period = int(period / dt()) * dt()
        actual_start_time = np.ceil(start_time_arr / period) * period

        actual_stop_time = np.ceil(stop_time_arr / period - 1) * period

        nr_rec_vals = 1 + (actual_stop_time - actual_start_time) / period

        return (actual_start_time, actual_stop_time, nr_rec_vals)

    def _get_temp_timings(self):
        """
        Generates a timings dictionary with time lims and idx lims for each compartment.
        Calculates the idx lims of the recordings based on the time lims.

        Returns:
            temp_timings (dict):
                Dict with time lims and idx lims for each compartment.
        """
        temp_timings = {}
        for key in self.mon_dict.keys():
            _, compartment, period = self._unpack_mon_dict_keys(key)
            if len(self.timings[compartment]["start"]) > len(
                self.timings[compartment]["stop"]
            ):
                ### was started/resumed but never stoped after --> use current time for stop time
                self.timings[compartment]["stop"].append(ann.get_time())
            ### calculate the idx of the recorded arrays which correspond to the timings and remove 'currently_paused'
            ### get for each start-stop pair the corrected start stop timings (when teh values were actually recorded, depends on period and timestep)
            ### and also get the number of recorded values for start-stop pair
            start_time_arr = np.array(self.timings[compartment]["start"])
            stop_time_arr = np.array(self.timings[compartment]["stop"])
            (
                start_time_arr,
                stop_time_arr,
                nr_rec_vals_arr,
            ) = self._correct_start_stop(start_time_arr, stop_time_arr, period)

            ### with the number of recorded values -> get start and end idx for each start-stop pair
            start_idx = [
                np.sum(nr_rec_vals_arr[0:i]).astype(int)
                for i in range(nr_rec_vals_arr.size)
            ]
            stop_idx = [
                np.sum(nr_rec_vals_arr[0 : i + 1]).astype(int) - 1
                for i in range(nr_rec_vals_arr.size)
            ]

            ### return start-stop pair info in timings format
            temp_timings[compartment] = {
                "start": {
                    "ms": np.round(
                        start_time_arr, af.get_number_of_decimals(ann.dt())
                    ).tolist(),
                    "idx": start_idx,
                },
                "stop": {
                    "ms": np.round(
                        stop_time_arr, af.get_number_of_decimals(ann.dt())
                    ).tolist(),
                    "idx": stop_idx,
                },
            }
        return temp_timings

    def _any_recordings_in_current_chunk(self):
        """
        Check if there are any recordings in the current chunk.

        Returns:
            any_recordings (bool):
                True if there are any recordings in the current chunk, False otherwise.
        """
        temp_timings = self._get_temp_timings()

        ### generate a temp object of temp timings to check if there were recordings at all
        recording_times_ob_temp = RecordingTimes([temp_timings])
        return recording_times_ob_temp._any_recordings(chunk=0)

    def _add_monitors(self, mon_dict: dict):
        """
        Generate monitors defined by mon_dict.

        Args:
            mon_dict (dict):
                dict with key="compartment_name;period" where period is optional and
                val=list with variables to record.

        Returns:
            mon (dict):
                dict with key="pop_name" for populations and key="proj_name" for
                projections and val=ANNarchy monitor object.
        """
        mon = {}
        for key, val in mon_dict.items():
            compartmentType, compartment, period = self._unpack_mon_dict_keys(
                key, warning=True
            )
            ### check if compartment is pop
            if compartmentType == "pop":
                mon[compartment] = ann.Monitor(
                    ann.get_population(compartment), val, start=False, period=period
                )
            ### check if compartment is proj
            if compartmentType == "proj":
                mon[compartment] = ann.Monitor(
                    ann.get_projection(compartment), val, start=False, period=period
                )
        return mon

    def _start_monitors(self, compartment_list, mon, timings=None):
        """
        Starts or resumes monitores defined by compartment_list.

        Args:
            compartment_list (list):
                List with compartment names to start or resume recording.
            mon (dict):
                Dict with key="pop_name" for populations and key="proj_name" for
                projections and val=ANNarchy monitor object.
            timings (dict, optional):
                timings variable of the CompNeuroMonitors object. Default: None.

        Returns:
            timings (dict):
                timings variable of the CompNeuroMonitors object.
        """
        ### for each compartment generate started variable (because compartments can ocure multiple times if multiple variables of them are recorded --> do not start same monitor multiple times)
        started = {}
        for compartment_name in compartment_list:
            started[compartment_name] = False

        if timings == None:
            ### information about pauses not available, just start
            for compartment_name in compartment_list:
                if started[compartment_name] == False:
                    mon[compartment_name].start()
                    print("start", compartment_name)
                    started[compartment_name] = True
            return None
        else:
            ### information about pauses available, start if not paused, resume if paused
            for compartment_name in compartment_list:
                if started[compartment_name] == False:
                    if timings[compartment_name]["currently_paused"]:
                        if len(timings[compartment_name]["start"]) > 0:
                            ### resume
                            mon[compartment_name].resume()
                        else:
                            ### initial start
                            mon[compartment_name].start()
                    started[compartment_name] = True
                    ### update currently_paused
                    timings[compartment_name]["currently_paused"] = False
                    ### never make start longer than stop+1!... this can be caused if start is called multiple times without pause in between
                    if len(timings[compartment_name]["start"]) <= len(
                        timings[compartment_name]["stop"]
                    ):
                        timings[compartment_name]["start"].append(ann.get_time())
            return timings

    def _pause_monitors(self, compartment_list, mon, timings=None):
        """
        Pause monitores defined by compartment_list.

        Args:
            compartment_list (list):
                List with compartment names to pause recording.
            mon (dict):
                Dict with key="pop_name" for populations and key="proj_name" for
                projections and val=ANNarchy monitor object.
            timings (dict, optional):
                timings variable of the CompNeuroMonitors object. Default: None.

        Returns:
            timings (dict):
                timings variable of the CompNeuroMonitors object.
        """
        ### for each compartment generate paused variable (because compartments can ocure multiple times if multiple variables of them are recorded --> do not pause same monitor multiple times)
        paused = {}
        for compartment_name in compartment_list:
            paused[compartment_name] = False

        for compartment_name in compartment_list:
            if paused[compartment_name] == False:
                mon[compartment_name].pause()
                paused[compartment_name] = True

        if timings != None:
            ### information about pauses is available, update it
            for key, val in paused.items():
                timings[key]["currently_paused"] = True
                ### never make pause longer than start, this can be caused if pause is called multiple times without start in between
                if len(timings[key]["stop"]) < len(timings[key]["start"]):
                    timings[key]["stop"].append(ann.get_time())
                ### if pause is directly called after start --> start == stop --> remove these entries, this is no actual period
                if (
                    len(timings[key]["stop"]) == len(timings[key]["start"])
                    and timings[key]["stop"][-1] == timings[key]["start"][-1]
                ):
                    timings[key]["stop"] = timings[key]["stop"][:-1]
                    timings[key]["start"] = timings[key]["start"][:-1]
            return timings
        else:
            return None

    def _get_monitors(self, mon_dict, mon):
        """
        Get recorded values from ANNarchy monitors defined by mon_dict.

        Args:
            mon_dict (dict):
                dict with key="compartment_name;period" where period is optional and
                val=list with variables to record.
            mon (dict):
                Dict with key="pop_name" for populations and key="proj_name" for
                projections and val=ANNarchy monitor object.

        Returns:
            recordings (dict):
                Dict with key="compartment_name;variable" and val=list with recorded
                values.
        """
        recordings = {}
        for key, val in mon_dict.items():
            compartment_type, compartment, period = self._unpack_mon_dict_keys(key)
            recordings[f"{compartment};period"] = period
            if compartment_type == "pop":
                pop = ann.get_population(compartment)
                parameter_dict = {
                    param_name: getattr(pop, param_name)
                    for param_name in pop.parameters
                }
                recordings[f"{compartment};parameter_dict"] = parameter_dict
            if compartment_type == "proj":
                proj = ann.get_projection(compartment)
                parameter_dict = {
                    param_name: getattr(proj, param_name)
                    for param_name in proj.parameters
                }
                recordings[f"{compartment};parameters"] = parameter_dict
            for val_val in val:
                temp = mon[compartment].get(val_val)
                recordings[f"{compartment};{val_val}"] = temp
        recordings["dt"] = ann.dt()
        return recordings

    def _unpack_mon_dict_keys(self, s: str, warning: bool = False):
        """
        Unpacks a string of the form "compartment_name;period" or
        "compartment_name" into its components. If period is not provided
        it is set to dt() for populations and dt()*1000 for projections.

        Args:
            s (str):
                String to be unpacked
            warning (bool, optional):
                If True, print warning if period is not provided for projections.

        Returns:
            compartment_type (str):
                Compartment type
            compartment_name (str):
                Compartment name
            period (float):
                Period of the compartment
        """
        ### split string
        splitted_s = s.split(";")

        ### get name
        compartment_name = splitted_s[0]

        ### get type
        pop_list = [pop.name for pop in ann.populations()]
        proj_list = [proj.name for proj in ann.projections()]
        if compartment_name in pop_list and compartment_name in proj_list:
            ### raise error because name is in both lists
            print(
                "ERROR CompNeuroMonitors._unpack_mon_dict_keys(): compartment_name is both populaiton and projection"
            )
            quit()
        elif compartment_name in pop_list:
            compartment_type = "pop"
        elif compartment_name in proj_list:
            compartment_type = "proj"

        ### get period
        if len(splitted_s) == 2:
            period = float(splitted_s[1])
        else:
            period = {"pop": ann.dt(), "proj": ann.dt() * 1000}[compartment_type]
            ### print warning for compartment_type proj
            if compartment_type == "proj" and warning:
                print(
                    f"WARNING CompNeuroMonitors: no period provided for projection {compartment_name}, period set to {period} ms"
                )
        period = round(period / ann.dt()) * ann.dt()

        return compartment_type, compartment_name, period

__init__(mon_dict={}) #

Initialize CompNeuroMonitors object by creating ANNarchy monitors.

Parameters:

Name Type Description Default
mon_dict dict

dict with key="compartment_name;period" where period is optional and val=list with variables to record.

{}
Source code in CompNeuroPy/monitors.py
14
15
16
17
18
19
20
21
22
23
24
25
def __init__(self, mon_dict={}):
    """
    Initialize CompNeuroMonitors object by creating ANNarchy monitors.

    Args:
        mon_dict (dict):
            dict with key="compartment_name;period" where period is optional and
            val=list with variables to record.
    """
    self.mon = self._add_monitors(mon_dict)
    self.mon_dict = mon_dict
    self._init_internals(init_call=True)

start(compartment_list=None) #

Start or resume recording of all recorded compartments in compartment_list.

Parameters:

Name Type Description Default
compartment_list list

List with compartment names to start or resume recording. Default: None, i.e., all compartments of initialized mon_dict are started or resumed.

None
Source code in CompNeuroPy/monitors.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
@check_types()
def start(self, compartment_list: list | None = None):
    """
    Start or resume recording of all recorded compartments in compartment_list.

    Args:
        compartment_list (list, optional):
            List with compartment names to start or resume recording. Default: None,
            i.e., all compartments of initialized mon_dict are started or resumed.
    """
    if compartment_list == None:
        mon_dict_key_list = list(self.mon_dict.keys())
        compartment_list = [
            self._unpack_mon_dict_keys(key)[1] for key in mon_dict_key_list
        ]

    self.timings = self._start_monitors(compartment_list, self.mon, self.timings)

pause(compartment_list=None) #

Pause recording of all recorded compartments in compartment_list.

Parameters:

Name Type Description Default
compartment_list list

List with compartment names to pause recording. Default: None, i.e., all compartments of initialized mon_dict are paused.

None
Source code in CompNeuroPy/monitors.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
@check_types()
def pause(self, compartment_list: list | None = None):
    """
    Pause recording of all recorded compartments in compartment_list.

    Args:
        compartment_list (list, optional):
            List with compartment names to pause recording. Default: None,
            i.e., all compartments of initialized mon_dict are paused.
    """
    if compartment_list == None:
        mon_dict_key_list = list(self.mon_dict.keys())
        compartment_list = [
            self._unpack_mon_dict_keys(key)[1] for key in mon_dict_key_list
        ]

    self.timings = self._pause_monitors(compartment_list, self.mon, self.timings)

reset(populations=True, projections=False, synapses=False, monitors=True, model=True, parameters=True, net_id=0) #

Create a new recording chunk by getting recordings and recording times of the current chunk and optionally resetting the model. Recordings are automatically resumed in the new chunk if they are not paused.

Parameters:

Name Type Description Default
populations bool

If True, reset populations. Default: True.

True
projections bool

If True, reset projections. Default: False.

False
synapses bool

If True, reset synapses. Default: False.

False
monitors bool

If True, reset ANNarchy monitors. Default: True.

True
model bool

If True, reset model. Default: True.

True
parameters bool

If True, reset the parameters of popilations and projections. Default: True.

True
net_id int

Id of the network to reset. Default: 0.

0
Source code in CompNeuroPy/monitors.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def reset(
    self,
    populations=True,
    projections=False,
    synapses=False,
    monitors=True,
    model=True,
    parameters=True,
    net_id=0,
):
    """
    Create a new recording chunk by getting recordings and recording times of the
    current chunk and optionally resetting the model. Recordings are automatically
    resumed in the new chunk if they are not paused.

    Args:
        populations (bool, optional):
            If True, reset populations. Default: True.
        projections (bool, optional):
            If True, reset projections. Default: False.
        synapses (bool, optional):
            If True, reset synapses. Default: False.
        monitors (bool, optional):
            If True, reset ANNarchy monitors. Default: True.
        model (bool, optional):
            If True, reset model. Default: True.
        parameters (bool, optional):
            If True, reset the parameters of popilations and projections. Default:
            True.
        net_id (int, optional):
            Id of the network to reset. Default: 0.
    """
    ### TODO rename this function to new_chunk() or something like that and let
    ### recordings and recording times be returned
    self.get_recordings_reset_call = True
    self.get_recordings()
    self.get_recording_times()
    self.get_recordings_reset_call = False
    self.already_got_recordings = (
        False  # after reset one can still update recordings
    )
    self.already_got_recording_times = (
        False  # after reset one can still update recording_times
    )

    ### reset timings, after reset, add a zero to start if the monitor is still
    ### running (this is not resetted by reset())
    ### if the model was not resetted --> do add current time instead of zero
    for key in self.timings.keys():
        self.timings[key]["start"] = []
        self.timings[key]["stop"] = []
        if self.timings[key]["currently_paused"] == False:
            if model:
                self.timings[key]["start"].append(0)
            else:
                self.timings[key]["start"].append(
                    np.round(ann.get_time(), af.get_number_of_decimals(ann.dt()))
                )

    ### reset model
    if model:
        if parameters is False:
            ### if parameters=False, get parameters before reset and set them after
            ### reset
            parameters_dict = mf._get_all_parameters()
        ann.reset(populations, projections, synapses, monitors, net_id=net_id)
        if parameters is False:
            ### if parameters=False, set parameters after reset
            mf._set_all_parameters(parameters_dict)

current_chunk() #

Get the index of the current chunk.

Returns:

Name Type Description
current_chunk_idx int

Index of the current chunk. If no recordings are currently active, returns None.

Source code in CompNeuroPy/monitors.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def current_chunk(self):
    """
    Get the index of the current chunk.

    Returns:
        current_chunk_idx (int):
            Index of the current chunk. If no recordings are currently active,
            returns None.
    """
    ### if recordings are currently active --> return chunk in which these recordings will be saved
    ### check if there are currently active recordings
    active_recordings = False
    for key, val in self.mon_dict.items():
        _, compartment, _ = self._unpack_mon_dict_keys(key)
        if not (self.timings[compartment]["currently_paused"]):
            ### tere are currently active recordings
            active_recordings = True

    if active_recordings:
        current_chunk_idx = len(self.recordings)
        return current_chunk_idx
    else:
        ### if currently no recordings are active return None
        return None

get_recordings() #

Get recordings of all recorded compartments.

Returns:

Name Type Description
recordings list

List with recordings of all chunks.

Source code in CompNeuroPy/monitors.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def get_recordings(self) -> list[dict]:
    """
    Get recordings of all recorded compartments.

    Returns:
        recordings (list):
            List with recordings of all chunks.
    """
    ### only if recordings in current chunk and get_recodings was not already called add current chunk to recordings
    if (
        self._any_recordings_in_current_chunk()
        and self.already_got_recordings is False
    ):
        ### update recordings
        self.recordings.append(self._get_monitors(self.mon_dict, self.mon))
        ### upade already_got_recordings --> it will not update recordings again
        self.already_got_recordings = True

        if not (self.get_recordings_reset_call):
            if len(self.recordings) == 0:
                print(
                    "WARNING get_recordings: no recordings available, empty list returned. Maybe forgot start()?"
                )
        return self.recordings
    else:
        if not (self.get_recordings_reset_call):
            if len(self.recordings) == 0:
                print(
                    "WARNING get_recordings: no recordings available, empty list returned. Maybe forgot start()?"
                )
        return self.recordings

get_recording_times() #

Get recording times of all recorded compartments.

Returns:

Name Type Description
recording_times recording_times_cl

Object with recording times of all chunks.

Source code in CompNeuroPy/monitors.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def get_recording_times(self):
    """
    Get recording times of all recorded compartments.

    Returns:
        recording_times (recording_times_cl):
            Object with recording times of all chunks.
    """

    temp_timings = self._get_temp_timings()

    ### only append temp_timings of current chunk if there are recordings in current chunk at all and if get_recordings was not already called (double call would add the same chunk again)
    if (
        self._any_recordings_in_current_chunk()
        and self.already_got_recording_times is False
    ):
        self.recording_times.append(temp_timings)

    ### upade already_got_recording_times --> it will not update recording_times again
    self.already_got_recording_times = True

    ### generate a object from recording_times and return this instead of the dict
    recording_times_ob = RecordingTimes(self.recording_times)

    if not (self.get_recordings_reset_call):
        if len(self.recording_times) == 0:
            print(
                "WARNING get_recording_times: no recordings available, empty list returned. Maybe forgot start()?"
            )
    return recording_times_ob

get_recordings_and_clear() #

The default get_recordings method should be called at the end of the simulation. The get_recordings_and_clear method allows to get several times recordings with the same monitor object and to simulate between the calls. Sets the internal variables back to their initial state. Usefull if you repeat a simulation + recording several times and you do not want to always create new chunks.

Warning

If you want to continue recording after calling this method, you have to call start() again.

Returns:

Name Type Description
recordings list

List with recordings of all chunks.

recording_times recording_times_cl

Object with recording times of all chunks.

Source code in CompNeuroPy/monitors.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def get_recordings_and_clear(self):
    """
    The default get_recordings method should be called at the end of the simulation.
    The get_recordings_and_clear method allows to get several times recordings with
    the same monitor object and to simulate between the calls. Sets the internal
    variables back to their initial state. Usefull if you repeat a simulation +
    recording several times and you do not want to always create new chunks.

    !!! warning
        If you want to continue recording after calling this method, you have to
        call start() again.

    Returns:
        recordings (list):
            List with recordings of all chunks.
        recording_times (recording_times_cl):
            Object with recording times of all chunks.
    """
    ret0 = self.get_recordings()
    ret1 = self.get_recording_times()
    self._init_internals()
    ret = (ret0, ret1)
    return ret

CompNeuroPy.monitors.RecordingTimes #

Source code in CompNeuroPy/monitors.py
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
class RecordingTimes:
    def __init__(self, recording_times_list):
        """
        Initialize RecordingTimes object.

        Args:
            recording_times_list (list):
                List with recording times of all chunks.
        """
        self.recording_times_list = recording_times_list

    def time_lims(
        self,
        chunk: int | None = None,
        compartment: str | None = None,
        period: int | None = None,
    ):
        """
        Get the time limits recordings of of a specified chunk/model compartment in ms.

        chunk (int, optional):
            Index of the chunk. Default: None, i.e., first chunk.
        compartment (str, optional):
            Name of the compartment. Default: None, i.e., first model compartment from
            monitor.
        period (int, optional):
            Index of the period. Default: None, i.e., all periods.

        Returns:
            lims (tuple):
                Tuple with start and stop time of the specified chunk/model compartment.
        """
        assert (
            len(self.recording_times_list) > 0
        ), "ERROR time_lims(): No recordings/recording_times available."
        return self._lims("ms", chunk, compartment, period)

    def idx_lims(
        self,
        chunk: int | None = None,
        compartment: str | None = None,
        period: int | None = None,
    ):
        """
        Get the index limits of recordings of a specified chunk/model compartment.

        chunk (int, optional):
            Index of the chunk. Default: None, i.e., first chunk.
        compartment (str, optional):
            Name of the compartment. Default: None, i.e., first model compartment from
            monitor.
        period (int, optional):
            Index of the period. Default: None, i.e., all periods.

        Returns:
            lims (tuple):
                Tuple with start and stop index of the specified chunk/model
                compartment.
        """
        assert (
            len(self.recording_times_list) > 0
        ), "ERROR idx_lims(): No recordings/recording_times available."
        return self._lims("idx", chunk, compartment, period)

    def all(self):
        """
        Get the recording times of all chunks, compartments, periods in ms and index.

        Returns:
            recording_times_list (list):
                List with recording times of all chunks.
        """
        return self.recording_times_list

    def nbr_periods(self, chunk=None, compartment=None):
        """
        Get the number of recording periods (start-pause) of a specified chunk/model
        compartment.

        Args:
            chunk (int, optional):
                Index of the chunk. Default: None, i.e., first chunk.
            compartment (str, optional):
                Name of the compartment. Default: None, i.e., first model compartment
                from monitor.

        Returns:
            nr_periods (int):
                Number of recording periods (start-pause) of a specified chunk/model
                compartment.
        """
        chunk = self._check_chunk(chunk)
        compartment = self.__check_compartment__(compartment, chunk)
        return self._get_nr_periods(chunk, compartment)

    nr_periods = nbr_periods

    def combine_periods(
        self,
        recordings: list,
        recording_data_str: str,
        chunk: int = 0,
        fill: str | float = "none",
    ):
        """
        Combines the data of all periods of a specified chunk/model compartment.

        Args:
            recordings (list):
                List with recordings of all chunks.
            recording_data_str (str):
                String specifying the compartment name and the variable to combine.
                Format: "compartment_name;variable_name"
            chunk (int, optional):
                Index of the chunk. Default: 0.
            fill (str|float, optional):
                How recording pauses should be filled. Can be "none" (no filling),
                "nan" (fill with nan), "interpolate" (interpolate with nearest) or a
                float (fill with this value). Default: "none".

        Returns:
            time_arr (np.array):
                Array with time values in ms.
            data_arr (np.array):
                Array with the recorded variable.
        """
        compartment = recording_data_str.split(";")[0]
        period_time = recordings[0][f"{compartment};period"]
        nr_periods = self._get_nr_periods(chunk, compartment)
        time_step = recordings[0]["dt"]
        time_list = []

        ### get time arr
        for period in range(nr_periods):
            start_time, end_time = self.time_lims(
                chunk=chunk, compartment=compartment, period=period
            )
            start_time = round(start_time, af.get_number_of_decimals(time_step))
            end_time = round(end_time, af.get_number_of_decimals(time_step))
            times = np.arange(start_time, end_time + period_time / 2, period_time)
            time_list.append(times)
        time_arr = np.concatenate(time_list, 0)

        ### get data arr
        try:
            data_arr = recordings[chunk][recording_data_str]
        except:
            ### create an nan array with the same length as time_arr
            data_arr = np.full(time_arr.shape, np.nan)

        ### fill gaps with nan or interpolate
        if fill == "nan":
            time_arr, data_arr = af.time_data_fill_gaps(
                time_arr,
                data_arr,
                fill_time_step=period_time,
            )
        elif fill == "interpolate":
            full_time_arr = np.arange(
                time_arr[0], time_arr[-1] + period_time / 2, period_time
            )
            f = interp1d(time_arr, data_arr, kind="nearest", axis=0)
            data_arr = f(full_time_arr)
            time_arr = full_time_arr
        elif isinstance(fill, (int, float)):
            time_arr, data_arr = af.time_data_fill_gaps(
                time_arr,
                data_arr,
                fill_time_step=period_time,
                fill=fill,
            )

        return time_arr, data_arr

    def combine_chunks(
        self, recordings: list, recording_data_str: str, mode="sequential"
    ):
        """
        Combines the data of all chunks of recordings. Time periods without recordings
        AT THE BEGINNING OF chunks or WITHIN chunks (i.e. recording pauses) are
        considered and filled with nan values.

        !!! warning
            If you use mode="consecutive": Missing recordings AT THE END OF chunks
            (simulated but not recorded) are not considered, this leads to times which
            differ from the original simulation times (these time periods without
            recording are simply ignored)!

        Args:
            recordings (list):
                List with recordings of all chunks.
            recording_data_str (str):
                String specifying the compartment name and the variable to combine.
                Format: "compartment_name;variable_name"
            mode (str, optional):
                How should the time array be generated. Can be "sequential" or
                "consecutive". Default: "sequential".
                - "sequential": each chunk starts at zero e.g.: [0,100] + [0,250] -->
                    [0, 1, ..., 100, 0, 1, ..., 250]
                - "consecutive": each chunk starts at the last stop time of the previous
                    chunk e.g.: [0,100] + [0,250] --> [0, 1, ..., 100, 101, 102, ..., 350]

        Returns:
            time_arr (np.array):
                Array with time values in ms.
            data_arr (np.array):
                Array with the recorded variable.
        """
        assert (
            len(self.recording_times_list) > 0
        ), "ERROR combine_chunks(): No recordings/recording_times available."

        compartment = recording_data_str.split(";")[0]
        period_time = recordings[0][f"{compartment};period"]
        time_step = recordings[0]["dt"]
        nr_chunks = self._get_nr_chunks()
        data_list = []
        time_list = []
        pre_chunk_start_time = 0

        for chunk in range(nr_chunks):
            ### append data list with data of all periods of this chunk
            data_list.append(recordings[chunk][recording_data_str])

            ### nr of periods in this chunk
            nr_periods = self._get_nr_periods(chunk, compartment)

            ### start time of chunk depends on mode
            if mode == "sequential":
                chunk_start_time = 0
            elif mode == "consecutive":
                if chunk == 0:
                    chunk_start_time = 0
                else:
                    ### TODO this uses the wrong end time if there is a pause at the end
                    ### of the last chunk but it is not possible to get the info how long
                    ### nothing was recorded at the end of a chunk (all I save is from
                    ### when to when something is recorded)
                    last_stop_time = self.recording_times_list[chunk - 1][compartment][
                        "stop"
                    ]["ms"][-1]
                    chunk_start_time = (
                        pre_chunk_start_time + last_stop_time + period_time
                    )
                    pre_chunk_start_time = chunk_start_time
            else:
                print("ERROR recording_times.combine_data, Wrong mode.")
                quit()

            ### append the time list with all times of the periods
            for period in range(nr_periods):
                start_time = (
                    self.time_lims(chunk=chunk, compartment=compartment, period=period)[
                        0
                    ]
                    + chunk_start_time
                )
                end_time = (
                    self.time_lims(chunk=chunk, compartment=compartment, period=period)[
                        1
                    ]
                    + chunk_start_time
                )
                start_time = round(start_time, af.get_number_of_decimals(time_step))
                end_time = round(end_time, af.get_number_of_decimals(time_step))
                times = np.arange(start_time, end_time + period_time / 2, period_time)
                time_list.append(times)

        ### flatten the two lists
        data_arr = np.concatenate(data_list, 0)
        time_arr = np.concatenate(time_list, 0)

        ### check if there are gaps in the time array
        ### fill them with the corersponding times and
        ### the data array with nan values
        time_arr, data_arr = af.time_data_fill_gaps(
            time_arr,
            data_arr,
            fill_time_step=period_time,
        )

        return time_arr, data_arr

    def _lims(self, string, chunk=None, compartment=None, period=None):
        """
        Get the limits of recordings of a specified chunk/model compartment.

        Args:
            string (str):
                String specifying the type of limits to return. Can be "ms" for time
                limits in ms or "idx" for index limits.
            chunk (int, optional):
                Index of the chunk. Default: None, i.e., first chunk.
            compartment (str, optional):
                Name of the compartment. Default: None, i.e., first model compartment
                from monitor.
            period (int, optional):
                Index of the period. Default: None, i.e., all periods.

        Returns:
            lims (tuple):
                Tuple with start and stop time/index of the specified chunk/model
                compartment.
        """

        chunk = self._check_chunk(chunk)
        compartment = self.__check_compartment__(compartment, chunk)
        period_0, period_1 = self._check_period(period, chunk, compartment)
        lims = (
            self.recording_times_list[chunk][compartment]["start"][string][period_0],
            self.recording_times_list[chunk][compartment]["stop"][string][period_1],
        )
        return lims

    def __check_compartment__(self, compartment, chunk):
        if compartment == None:
            ### by default just use the first compartment
            compartment = list(self.recording_times_list[chunk].keys())[0]
        elif compartment in list(self.recording_times_list[chunk].keys()):
            compartment = compartment
        else:
            print(
                'ERROR recording_times, given compartment "'
                + str(compartment)
                + '" not available'
            )
            quit()

        return compartment

    def _check_period(self, period, chunk, compartment):
        """
        Check if period is given.

        Args:
            period (int, optional):
                Index of the period. Default: None, i.e., all periods.
            chunk (int):
                Index of the chunk.
            compartment (str):
                Name of the compartment.

        Returns:
            period_0 (int):
                Index of the first period.
            period_1 (int):
                Index of the last period. If perios is given, period_0 == period_1.
        """
        if period == None:
            ### by default use all periods
            period_0 = 0
            period_1 = (
                len(self.recording_times_list[chunk][compartment]["start"]["idx"]) - 1
            )
        elif period < len(
            self.recording_times_list[chunk][compartment]["start"]["idx"]
        ):
            period_0 = period
            period_1 = period
        else:
            print("ERROR recording_times, given period not available")
            quit()

        return period_0, period_1

    def _check_chunk(self, chunk):
        """
        Check if chunk is given.

        Args:
            chunk (int, optional):
                Index of the chunk. Default: None, i.e., first chunk.

        Returns:
            chunk (int):
                Index of the chunk.
        """
        if chunk is None:
            ### by default use first chunk
            chunk = 0
        elif chunk < self._get_nr_chunks():
            chunk = chunk
        else:
            print("ERROR recording_times, given chunk not available")
            quit()

        return chunk

    def _get_nr_chunks(self):
        """
        Get the number of chunks of the recordings.

        Returns:
            nr_chunks (int):
                Number of chunks.
        """
        return len(self.recording_times_list)

    def _get_nr_periods(self, chunk, compartment):
        """
        Get the number of recording periods (start-pause) of a specified chunk/model
        compartment.

        Args:
            chunk (int):
                Index of the chunk.
            compartment (str):
                Name of the compartment.

        Returns:
            nr_periods (int):
                Number of recording periods (start-pause) of a specified chunk/model
                compartment.
        """
        return len(self.recording_times_list[chunk][compartment]["start"]["idx"])

    def _any_recordings(self, chunk):
        """
        Check all periods and compartments if there are any recordings.

        Args:
            chunk (int):
                Index of the chunk.

        Returns:
            found_recordings (bool):
                True if there are any recordings in the chunk, False otherwise.
        """
        compartment_list = list(self.recording_times_list[chunk].keys())
        found_recordings = False
        for compartment in compartment_list:
            nr_periods_of_compartment = len(
                self.recording_times_list[chunk][compartment]["start"]["idx"]
            )

            for period_idx in range(nr_periods_of_compartment):
                idx_lims = self.idx_lims(
                    chunk=chunk, compartment=compartment, period=period_idx
                )
                if np.diff(idx_lims)[0] > 0:
                    found_recordings = True

        return found_recordings

__init__(recording_times_list) #

Initialize RecordingTimes object.

Parameters:

Name Type Description Default
recording_times_list list

List with recording times of all chunks.

required
Source code in CompNeuroPy/monitors.py
613
614
615
616
617
618
619
620
621
def __init__(self, recording_times_list):
    """
    Initialize RecordingTimes object.

    Args:
        recording_times_list (list):
            List with recording times of all chunks.
    """
    self.recording_times_list = recording_times_list

time_lims(chunk=None, compartment=None, period=None) #

Get the time limits recordings of of a specified chunk/model compartment in ms.

chunk (int, optional): Index of the chunk. Default: None, i.e., first chunk. compartment (str, optional): Name of the compartment. Default: None, i.e., first model compartment from monitor. period (int, optional): Index of the period. Default: None, i.e., all periods.

Returns:

Name Type Description
lims tuple

Tuple with start and stop time of the specified chunk/model compartment.

Source code in CompNeuroPy/monitors.py
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
def time_lims(
    self,
    chunk: int | None = None,
    compartment: str | None = None,
    period: int | None = None,
):
    """
    Get the time limits recordings of of a specified chunk/model compartment in ms.

    chunk (int, optional):
        Index of the chunk. Default: None, i.e., first chunk.
    compartment (str, optional):
        Name of the compartment. Default: None, i.e., first model compartment from
        monitor.
    period (int, optional):
        Index of the period. Default: None, i.e., all periods.

    Returns:
        lims (tuple):
            Tuple with start and stop time of the specified chunk/model compartment.
    """
    assert (
        len(self.recording_times_list) > 0
    ), "ERROR time_lims(): No recordings/recording_times available."
    return self._lims("ms", chunk, compartment, period)

idx_lims(chunk=None, compartment=None, period=None) #

Get the index limits of recordings of a specified chunk/model compartment.

chunk (int, optional): Index of the chunk. Default: None, i.e., first chunk. compartment (str, optional): Name of the compartment. Default: None, i.e., first model compartment from monitor. period (int, optional): Index of the period. Default: None, i.e., all periods.

Returns:

Name Type Description
lims tuple

Tuple with start and stop index of the specified chunk/model compartment.

Source code in CompNeuroPy/monitors.py
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def idx_lims(
    self,
    chunk: int | None = None,
    compartment: str | None = None,
    period: int | None = None,
):
    """
    Get the index limits of recordings of a specified chunk/model compartment.

    chunk (int, optional):
        Index of the chunk. Default: None, i.e., first chunk.
    compartment (str, optional):
        Name of the compartment. Default: None, i.e., first model compartment from
        monitor.
    period (int, optional):
        Index of the period. Default: None, i.e., all periods.

    Returns:
        lims (tuple):
            Tuple with start and stop index of the specified chunk/model
            compartment.
    """
    assert (
        len(self.recording_times_list) > 0
    ), "ERROR idx_lims(): No recordings/recording_times available."
    return self._lims("idx", chunk, compartment, period)

all() #

Get the recording times of all chunks, compartments, periods in ms and index.

Returns:

Name Type Description
recording_times_list list

List with recording times of all chunks.

Source code in CompNeuroPy/monitors.py
676
677
678
679
680
681
682
683
684
def all(self):
    """
    Get the recording times of all chunks, compartments, periods in ms and index.

    Returns:
        recording_times_list (list):
            List with recording times of all chunks.
    """
    return self.recording_times_list

nbr_periods(chunk=None, compartment=None) #

Get the number of recording periods (start-pause) of a specified chunk/model compartment.

Parameters:

Name Type Description Default
chunk int

Index of the chunk. Default: None, i.e., first chunk.

None
compartment str

Name of the compartment. Default: None, i.e., first model compartment from monitor.

None

Returns:

Name Type Description
nr_periods int

Number of recording periods (start-pause) of a specified chunk/model compartment.

Source code in CompNeuroPy/monitors.py
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
def nbr_periods(self, chunk=None, compartment=None):
    """
    Get the number of recording periods (start-pause) of a specified chunk/model
    compartment.

    Args:
        chunk (int, optional):
            Index of the chunk. Default: None, i.e., first chunk.
        compartment (str, optional):
            Name of the compartment. Default: None, i.e., first model compartment
            from monitor.

    Returns:
        nr_periods (int):
            Number of recording periods (start-pause) of a specified chunk/model
            compartment.
    """
    chunk = self._check_chunk(chunk)
    compartment = self.__check_compartment__(compartment, chunk)
    return self._get_nr_periods(chunk, compartment)

combine_periods(recordings, recording_data_str, chunk=0, fill='none') #

Combines the data of all periods of a specified chunk/model compartment.

Parameters:

Name Type Description Default
recordings list

List with recordings of all chunks.

required
recording_data_str str

String specifying the compartment name and the variable to combine. Format: "compartment_name;variable_name"

required
chunk int

Index of the chunk. Default: 0.

0
fill str | float

How recording pauses should be filled. Can be "none" (no filling), "nan" (fill with nan), "interpolate" (interpolate with nearest) or a float (fill with this value). Default: "none".

'none'

Returns:

Name Type Description
time_arr array

Array with time values in ms.

data_arr array

Array with the recorded variable.

Source code in CompNeuroPy/monitors.py
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def combine_periods(
    self,
    recordings: list,
    recording_data_str: str,
    chunk: int = 0,
    fill: str | float = "none",
):
    """
    Combines the data of all periods of a specified chunk/model compartment.

    Args:
        recordings (list):
            List with recordings of all chunks.
        recording_data_str (str):
            String specifying the compartment name and the variable to combine.
            Format: "compartment_name;variable_name"
        chunk (int, optional):
            Index of the chunk. Default: 0.
        fill (str|float, optional):
            How recording pauses should be filled. Can be "none" (no filling),
            "nan" (fill with nan), "interpolate" (interpolate with nearest) or a
            float (fill with this value). Default: "none".

    Returns:
        time_arr (np.array):
            Array with time values in ms.
        data_arr (np.array):
            Array with the recorded variable.
    """
    compartment = recording_data_str.split(";")[0]
    period_time = recordings[0][f"{compartment};period"]
    nr_periods = self._get_nr_periods(chunk, compartment)
    time_step = recordings[0]["dt"]
    time_list = []

    ### get time arr
    for period in range(nr_periods):
        start_time, end_time = self.time_lims(
            chunk=chunk, compartment=compartment, period=period
        )
        start_time = round(start_time, af.get_number_of_decimals(time_step))
        end_time = round(end_time, af.get_number_of_decimals(time_step))
        times = np.arange(start_time, end_time + period_time / 2, period_time)
        time_list.append(times)
    time_arr = np.concatenate(time_list, 0)

    ### get data arr
    try:
        data_arr = recordings[chunk][recording_data_str]
    except:
        ### create an nan array with the same length as time_arr
        data_arr = np.full(time_arr.shape, np.nan)

    ### fill gaps with nan or interpolate
    if fill == "nan":
        time_arr, data_arr = af.time_data_fill_gaps(
            time_arr,
            data_arr,
            fill_time_step=period_time,
        )
    elif fill == "interpolate":
        full_time_arr = np.arange(
            time_arr[0], time_arr[-1] + period_time / 2, period_time
        )
        f = interp1d(time_arr, data_arr, kind="nearest", axis=0)
        data_arr = f(full_time_arr)
        time_arr = full_time_arr
    elif isinstance(fill, (int, float)):
        time_arr, data_arr = af.time_data_fill_gaps(
            time_arr,
            data_arr,
            fill_time_step=period_time,
            fill=fill,
        )

    return time_arr, data_arr

combine_chunks(recordings, recording_data_str, mode='sequential') #

Combines the data of all chunks of recordings. Time periods without recordings AT THE BEGINNING OF chunks or WITHIN chunks (i.e. recording pauses) are considered and filled with nan values.

Warning

If you use mode="consecutive": Missing recordings AT THE END OF chunks (simulated but not recorded) are not considered, this leads to times which differ from the original simulation times (these time periods without recording are simply ignored)!

Parameters:

Name Type Description Default
recordings list

List with recordings of all chunks.

required
recording_data_str str

String specifying the compartment name and the variable to combine. Format: "compartment_name;variable_name"

required
mode str

How should the time array be generated. Can be "sequential" or "consecutive". Default: "sequential". - "sequential": each chunk starts at zero e.g.: [0,100] + [0,250] --> [0, 1, ..., 100, 0, 1, ..., 250] - "consecutive": each chunk starts at the last stop time of the previous chunk e.g.: [0,100] + [0,250] --> [0, 1, ..., 100, 101, 102, ..., 350]

'sequential'

Returns:

Name Type Description
time_arr array

Array with time values in ms.

data_arr array

Array with the recorded variable.

Source code in CompNeuroPy/monitors.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
def combine_chunks(
    self, recordings: list, recording_data_str: str, mode="sequential"
):
    """
    Combines the data of all chunks of recordings. Time periods without recordings
    AT THE BEGINNING OF chunks or WITHIN chunks (i.e. recording pauses) are
    considered and filled with nan values.

    !!! warning
        If you use mode="consecutive": Missing recordings AT THE END OF chunks
        (simulated but not recorded) are not considered, this leads to times which
        differ from the original simulation times (these time periods without
        recording are simply ignored)!

    Args:
        recordings (list):
            List with recordings of all chunks.
        recording_data_str (str):
            String specifying the compartment name and the variable to combine.
            Format: "compartment_name;variable_name"
        mode (str, optional):
            How should the time array be generated. Can be "sequential" or
            "consecutive". Default: "sequential".
            - "sequential": each chunk starts at zero e.g.: [0,100] + [0,250] -->
                [0, 1, ..., 100, 0, 1, ..., 250]
            - "consecutive": each chunk starts at the last stop time of the previous
                chunk e.g.: [0,100] + [0,250] --> [0, 1, ..., 100, 101, 102, ..., 350]

    Returns:
        time_arr (np.array):
            Array with time values in ms.
        data_arr (np.array):
            Array with the recorded variable.
    """
    assert (
        len(self.recording_times_list) > 0
    ), "ERROR combine_chunks(): No recordings/recording_times available."

    compartment = recording_data_str.split(";")[0]
    period_time = recordings[0][f"{compartment};period"]
    time_step = recordings[0]["dt"]
    nr_chunks = self._get_nr_chunks()
    data_list = []
    time_list = []
    pre_chunk_start_time = 0

    for chunk in range(nr_chunks):
        ### append data list with data of all periods of this chunk
        data_list.append(recordings[chunk][recording_data_str])

        ### nr of periods in this chunk
        nr_periods = self._get_nr_periods(chunk, compartment)

        ### start time of chunk depends on mode
        if mode == "sequential":
            chunk_start_time = 0
        elif mode == "consecutive":
            if chunk == 0:
                chunk_start_time = 0
            else:
                ### TODO this uses the wrong end time if there is a pause at the end
                ### of the last chunk but it is not possible to get the info how long
                ### nothing was recorded at the end of a chunk (all I save is from
                ### when to when something is recorded)
                last_stop_time = self.recording_times_list[chunk - 1][compartment][
                    "stop"
                ]["ms"][-1]
                chunk_start_time = (
                    pre_chunk_start_time + last_stop_time + period_time
                )
                pre_chunk_start_time = chunk_start_time
        else:
            print("ERROR recording_times.combine_data, Wrong mode.")
            quit()

        ### append the time list with all times of the periods
        for period in range(nr_periods):
            start_time = (
                self.time_lims(chunk=chunk, compartment=compartment, period=period)[
                    0
                ]
                + chunk_start_time
            )
            end_time = (
                self.time_lims(chunk=chunk, compartment=compartment, period=period)[
                    1
                ]
                + chunk_start_time
            )
            start_time = round(start_time, af.get_number_of_decimals(time_step))
            end_time = round(end_time, af.get_number_of_decimals(time_step))
            times = np.arange(start_time, end_time + period_time / 2, period_time)
            time_list.append(times)

    ### flatten the two lists
    data_arr = np.concatenate(data_list, 0)
    time_arr = np.concatenate(time_list, 0)

    ### check if there are gaps in the time array
    ### fill them with the corersponding times and
    ### the data array with nan values
    time_arr, data_arr = af.time_data_fill_gaps(
        time_arr,
        data_arr,
        fill_time_step=period_time,
    )

    return time_arr, data_arr